精英家教网 > 高中数学 > 题目详情
2.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=2Sn-1,则a2017=2017.

分析 an≠0,anan+1=2Sn-1,n≥2时,an-1an=2Sn-1-1,相减可得:an+1-an-1=2,可得:数列{an}的奇数项成等差数列,利用通项公式即可得出.

解答 解:∵an≠0,anan+1=2Sn-1,
∴n≥2时,an-1an=2Sn-1-1,∴anan+1-an-1an=2an
∴an+1-an-1=2,
∴数列{an}的奇数项成等差数列,公差为2,首项为1.
∴a2017=1+1008×2=2017.
故答案为:2017.

点评 本题考查了等差数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.阅读右边的程序框图,运行相应的程序,输出的结果为(  )
A.17B.10C.9D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等比数列{an}中,Sn为其前n项和,已知a5=2S4+3,a6=2S5+3,则此数列的公比q=3,a4,a6的等比中项为243,数列$\{\frac{6n+1}{a_n}\}$的最大值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知AB=$\sqrt{2}$,AC=$\sqrt{5}$,tan∠BAC=-3,则BC边上的高等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校为了解高一学生周末的“阅读时间”,从高一年级中随机调查了100名学生进行调查,获得了每人的周末“阅读时间”(单位:小时),按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.
(Ⅰ)求图中a的值;
(Ⅱ)估计该校高一学生周末“阅读时间”的中位数;
(Ⅲ)在[1,1.5),[1.5,2)这两组中采用分层抽样抽取7人,再从7人中随机抽取2人,求抽取的两人恰好都在一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)=x2+$\frac{a}{x}$,下列结论正确的是(  )
A.?a∈R,函数f(x)是奇函数B.?a∈R,函数f(x)是偶函数
C.?a>0,函数f(x)在(-∞,0)上是减函数D.?a>0,函数f(x)在(0,+∞)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若方程组$\left\{\begin{array}{l}ax+2y=3\\ 2x+ay=2\end{array}\right.$无解,则实数a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=\left\{{\begin{array}{l}{-x+3a(x<0)}\\{{a^x}+1(x≥0)}\end{array}}\right.$(a>0,且a≠1)是R上的减函数,则a的取值范围是$[\frac{2}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义在R上的奇函数f(x)满足$f({\frac{3}{2}-x})=f(x),f({-2})=-3$,Sn为数列{an}的前n项和,且Sn=2an+n,则f(a5)+f(a6)=3.

查看答案和解析>>

同步练习册答案