【题目】设曲线
是焦点在
轴上的椭圆,两个焦点分别是是
,
,且
,
是曲线上的任意一点,且点
到两个焦点距离之和为4.
(1)求
的标准方程;
(2)设
的左顶点为
,若直线
:
与曲线
交于两点
,
(
,
不是左右顶点),且满足
,求证:直线
恒过定点,并求出该定点的坐标.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知点
,动点
到点
的距离比到
轴的距离大1个单位长度.
(1)求动点
的轨迹方程
;
(2)若过点
的直线
与曲线
交于
,
两点,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数![]()
常数
)满足
.
(1)求出
的值,并就常数
的不同取值讨论函数
奇偶性;
(2)若
在区间
上单调递减,求
的最小值;
(3)在(2)的条件下,当
取最小值时,证明:
恰有一个零点
且存在递增的正整数数列
,使得
成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
参数方程为
为参数),将曲线
上所有点的横坐标变为原来的
,纵坐标变为原来的
,得到曲线
.
(1)求曲线
的普通方程;
(2)过点
且倾斜角为
的直线
与曲线
交于
两点,求
取得最小值时
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,一个长轴顶点在直线
上,若直线
与椭圆交于
,
两点,
为坐标原点,直线
的斜率为
,直线
的斜率为
.
(1)求该椭圆的方程.
(2)若
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019女排世界杯于2019年9月14日到9月29日举行,中国女排以十一胜卫冕女排世界杯冠军,四人进入最佳阵容,女排精神,已经是一种文化.为了了解某市居民对排球知识的了解情况,某机构随机抽取了100人参加排球知识问卷调查,将得分情况整理后作出的直方图如下:
![]()
(1)求图中实数
的值,并估算平均得分(每组数据以区间的中点值为代表);
(2)得分在90分以上的称为“铁杆球迷”,以样本频率估计总体概率,从该市居民中随机抽取4人,记这四人中“铁杆球迷”的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中
,则函数g(x)=cos(2x-φ)的图象( )
A.关于点
对称B.关于轴
对称
C.可由函数f(x)的图象向右平移
个单位得到D.可由函数f(x)的图象向左平移
个单位得到
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com