精英家教网 > 高中数学 > 题目详情
6.“a<1”是“函数f(x)=logax在区间(0,+∞)上为减函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 函数f(x)=logax在区间(0,+∞)上为减函数,可得0<a<1,即可得出.

解答 解:函数f(x)=logax在区间(0,+∞)上为减函数,则0<a<1,
因此“a<1”是“函数f(x)=logax在区间(0,+∞)上为减函数”的必要不充分条件.
故选:B.

点评 本题考查了对数函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图所示,已知C为圆${({x+\sqrt{2}})^2}$+y2=4的圆心,点A(${\sqrt{2}$,0),P是圆上的动点,点Q在圆的半径CP所在直线上,且$\overrightarrow{MQ}$•$\overrightarrow{AP}$=0,$\overrightarrow{AP}$=2$\overrightarrow{AM}$.当点P在圆上运动时,则点Q的轨迹方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式|x-a|<b(b>0)的解集是-3<x<5,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,在直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{2}+2t}\end{array}\right.$(t为参数),点O为极点,x轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρ=4cosθ.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将曲线C上的各点的横坐标缩短为原来的$\frac{1}{2}$,再将所得的曲线向左平移1个单位,得到曲线C1,求曲线C1上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,a1=25,d=-2,求{an}的前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设a,b∈R,若矩阵A=$(\begin{array}{l}{1}&{a}\\{b}&{0}\end{array})$的变换把直线l:x+y-1=0变换为另一直线l′:x+2y+l=0.
(1)求a,b的值.
(2)求矩阵A的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图为焦点在x轴上的椭圆,且离心率e=$\frac{\sqrt{2}}{2}$,且过点A(-2,1),有椭圆上异于点A的点P出发的光线射到点A处被直线y=1反射后交椭圆于点Q(点Q与点P不重合).
(1)求椭圆的标准方程;
(2)当反射光线AQ过点(0,-3)时,求△OAP的面积;
(3)求证:直线PQ的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在长方体ABCD-A1B1C1D1中,AB=1,BC=$\sqrt{3}$,点M在棱CC1上,且MD1⊥MA,则当△MAD1的面积最小时,棱CC1的长为(  )
A.$\frac{3}{2}$$\sqrt{2}$B.$\frac{\sqrt{10}}{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.小明在研究三棱锥的时候,发现下面一个真命题,在三棱锥A-BCD中,已知∠BAC=α,∠CAD=β,∠DAB=γ(如图),设二面角B-AC-D的大小为θ,则cosθ=$\frac{f(λ)-cosαcosβ}{sinαsinβ}$,其中f(γ)是一个与γ有关的代数式,请写出符合条件的f(γ)=cosγ.

查看答案和解析>>

同步练习册答案