【题目】已知
,
为两非零有理数列(即对任意的
,
均为有理数),
为一无理数列(即对任意的
,
为无理数).
(1)已知
,并且
对任意的
恒成立,试求
的通项公式.
(2)若
为有理数列,试证明:对任意的
,
恒成立的充要条件为
.
(3)已知
,
,对任意的
,
恒成立,试计算
.
科目:高中数学 来源: 题型:
【题目】数列
的前
项1,3,7,
,
(
)组成集合
,从集合
中任取
(
)个数,其所有可能的
个数的乘积的和为
(若只取一个数,规定乘积为此数本身),记
.例如:当
时,
,
,
;
时,
,
,
,
.
(1)当
时,求
,
,
,
的值;
(2)证明:
时集合
的
与
时集合
的
(为以示区别,用
表示)有关系式
(
,
);
(3)试求
(用
表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线
的右焦点分别为
,短袖长为
,点
在曲线
上,
直线
上,且
.
![]()
(1)求曲线的标准方程;
(2)试通过计算判断直线
与曲线
公共点的个数.
(3)若点
在都在以线段
为直径的圆上,且
,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列
满足:
,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前
项;
(2)设数列
是一个“比差等数列”,问
是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列
是一个“比差等数列”,
为其前
项的和,试证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,空间几何体由两部分构成,上部是一个底面半径为1,高为2的圆锥,下部是一个底面半径为1,高为2的圆柱,圆锥和圆柱的轴在同一直线上,圆锥的下底面与圆柱的上底面重合,点
是圆锥的顶点,
是圆柱下底面的一条直径,
、
是圆柱的两条母线,
是弧
的中点.
![]()
(1)求异面直线
与
所成的角的大小;
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,五边形
中,
,
,
分别是线段
的中点,且
,现沿
翻折,使得
,得到的图形如图(2)所示.
![]()
图(1) 图(2)
(1)证明:
平面
;
(2)若平面
与平面
所成角的平面角的余弦值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
、
、
,如果存在实数
、
使得
,那么称
为
、
的生成函数.
(1)若
,
,
,则
是否分别为
、
的生成函数?并说明理由;
(2)设
,
,
,
,生成函数
,若不等式
在
上有解,求实数
的取值范围;
(3)设
,
取
,
,生成函数
图象的最低点坐标为
,若对于任意正实数
、
且
,试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com