分析 (Ⅰ)由函数的零点列式得到$\frac{π}{3}$•ω+φ=kπ,再由已知求得周期,进一步求得ω,则φ可求,函数解析式可求;
(Ⅱ)由x的范围求得相位的范围,进一步求出函数值域,再由方程f(x)+log2k=0在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上恒有实数解即可求得k的范围.
解答 解:(Ⅰ)由题意,f($\frac{π}{3}$)=2sin($\frac{π}{3}$•ω+φ)=0,即$\frac{π}{3}$•ω+φ=kπ,①
$\frac{T}{4}=\frac{π}{3}-\frac{π}{12}=\frac{π}{4}$,即T=$\frac{2π}{ω}=π$,得ω=2,代入①得φ=$kπ-\frac{2π}{3}$,取k=1,得φ=$\frac{π}{3}$.
∴f(x)=2sin(2x$+\frac{π}{3}$);
(Ⅱ)∵x∈[$\frac{π}{4}$,$\frac{2π}{3}$],∴$2x+\frac{π}{3}$∈[$\frac{5π}{6},\frac{5π}{3}$],得f(x)∈[-1,$\frac{1}{2}$].
由f(x)+log2k=0,得log2k=-f(x)∈[-1,$\frac{1}{2}$].
∴k∈[$\frac{1}{2}$,$\sqrt{2}$].
点评 本题考查函数与方程的应用,三角函数的最值,周期及解析式的求法,考查转化思想以及计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{2}$) | B. | ($\frac{\sqrt{6}}{2}$,$\sqrt{2}$) | C. | ($\frac{\sqrt{6}}{2}$,$\sqrt{3}$) | D. | (1,$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | -2 | C. | 4 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>3} | B. | {x|x>1} | C. | {x|-1<x<3} | D. | {x|1<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{14}$ | B. | -$\frac{π}{7}$ | C. | $\frac{π}{14}$ | D. | $\frac{π}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com