精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2sinxcosx-sin2x+1,当x=θ时函数y=f(x)取得最小值,则$\frac{sin2θ+cos2θ}{sin2θ-cos2θ}$=(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 将函数f(x)=2sinxcosx-sin2x+1化解求解最小值,求出θ,带入$\frac{sin2θ+cos2θ}{sin2θ-cos2θ}$化解计算即可.

解答 解:函数f(x)=2sinxcosx-sin2x+1=sin2x+$\frac{1}{2}$cos2x+$\frac{1}{2}$=$\frac{\sqrt{5}}{2}$sin(2x+φ)+$\frac{1}{2}$,
其中tanφ=$\frac{1}{2}$,可得cotφ=2.
当x=θ时函数y=f(x)取得最小值,即2θ+φ=$-\frac{π}{2}+2kπ$,
那么:2θ=$-\frac{π}{2}-$φ+2kπ.
则$\frac{sin2θ+cos2θ}{sin2θ-cos2θ}$=$\frac{tan2θ+1}{tan2θ-1}$=$\frac{tan(-\frac{π}{2}-φ)+1}{tan(-\frac{π}{2}-φ)-1}$=$\frac{-tan(\frac{π}{2}+φ)+1}{-tan(\frac{π}{2}+φ)-1}$=$\frac{-cotφ+1}{-cotφ-1}=3$
故选B.

点评 本题主要考察了三角函数的诱导公式和辅助角公式,“弦化切”的思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,BC=CC1,D是A1C1中点.
(Ⅰ)求证:A1B∥平面B1CD;
(Ⅱ)当三棱锥C-B1C1D体积最大时,求点B到平面B1CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)$\frac{-2\sqrt{3}i+1}{1+2\sqrt{3}i}$+($\frac{\sqrt{2}}{1+i}$)2000+$\frac{1+i}{3-i}$;
(2)$\frac{{5{{(4+i)}^2}}}{i(2+i)}+\frac{2}{{{{(1-i)}^2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,对于任意x1∈R且x1≠0,均存在唯一实数x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4个不相等的实数根,则a的取值范围是(  )
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,D为BC中点,AD=3.
(1)当BC=4,AB=4时,求AC的长;
(2)当∠BAC=90°时,求△ABC周长的最大值;
(3)当∠BAD=45°,∠CAD=30°时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,角α的终边经过点(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则sinα的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的一个零点为$\frac{π}{3}$,其图象距离该零点最近的一条对称轴为x=$\frac{π}{12}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若关于x的方程f(x)+log2k=0在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上恒有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.平面内的动点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≤0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≥0\\ y≥0\end{array}\right.$,则z=2x+y的最大值是(  )
A.6B.4C.2D.0

查看答案和解析>>

同步练习册答案