| A. | (-∞,3) | B. | (3,+∞) | C. | (1,+∞) | D. | (-∞,1) |
分析 由函数的解析式,算出f(-x)+f(x)=6对任意的x均成立.因此原不等式等价于f(a-2)>f(-a),再利用导数证出f(x)是R上的单调减函数,可得原不等式即a-2<-a,由此即可解出实数a的取值范围.
解答 解:∵f(x)=-x5-3x3-5x+3,
∴f(-x)=x5+3x3+5x+3,可得f(-x)+f(x)=6对任意的x均成立.
因此不等式f(a)+f(a-2)>6,即f(a-2)>6-f(a),
等价于f(a-2)>f(-a)
∵f'(x)=-5x4-9x2-5<0恒成立,
∴f(x)是R上的单调减函数,
所以由f(a-2)>f(-a)得到a-2<-a,即a<1
故选:D
点评 本题给出多项式函数,求解关于a的不等式,着重考查了利用导数研究函数的单调性、函数的奇偶性和不等式的解法等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0.954 | B. | 0.023 | C. | 0.977 | D. | 0.046 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{25}{6}$ | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}={n^2}-({n-1})$ | B. | ${a_n}={n^2}-1$ | C. | ${a_n}=\frac{{n({n+1})}}{2}$ | D. | ${a_n}={n^2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0) | B. | (-2,0) | C. | (-3,-2) | D. | (0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{4}{e^2},+∞})$ | B. | $({0,\frac{4}{e^2}})$ | C. | (0,4e2) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com