精英家教网 > 高中数学 > 题目详情
14.已知sinα-cosα=-$\frac{\sqrt{5}}{5}$,180°<α<270°,则tanα=2.

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

解答 解:∵sinα-cosα=-$\frac{\sqrt{5}}{5}$,sin2α+cos2α=1,∵180°<α<270°,∴sinα<0,cosα<0,
∴sinα=-$\frac{2\sqrt{5}}{5}$,cosα=-$\frac{\sqrt{5}}{5}$,则tanα=$\frac{sinα}{cosα}$=2,
故答案为:2.

点评 本题主要考查同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若直线y=x+m和曲线y=$\sqrt{1-{x^2}}$恰有一个交点,则实数m的取值范围是$m=\sqrt{2}$或-1≤m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)求函数y=$\frac{{\sqrt{x+2}}}{x}$+(x-3)0的定义域.
(2)求函数y=2x-$\sqrt{x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数是奇函数的是(  )
A.y=xsin2xB.y=xcos2xC.y=x+cosxD.y=x-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinωx-cosωx(ω>0),x∈R,若函数f(x)在(-ω,ω)上是增函数,且图象关于直线x=-ω对称,则ω=(  )
A.2B.πC.$\frac{\sqrt{π}}{2}$D.$\frac{\sqrt{3π}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等比数列{an}的前n项和为Sn,若a1=1,且公比为2,则S4=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=logax在x∈[2,+∞)上恒有|y|>1,则a的范围是(  )
A.$\frac{1}{2}$<a<2且a≠1B.0<a<$\frac{1}{2}$或1<a<2C.1<a<2D.a>2或0<a<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$,其中$\overrightarrow{m}$=(2cosx,1),$\overrightarrow{n}$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期与单调减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2.
①求A;
②若b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求$\frac{b+c}{sinB+sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合$A=\left\{{x|{{log}_{\frac{1}{3}}}(x-1)>0}\right\},a={2^{0.3}}$,则下列关系正确的是(  )
A.A∩a=∅B.a⊆AC.a∉AD.a∈A

查看答案和解析>>

同步练习册答案