分析 根据通项$\frac{n•{2}^{n}+1}{{2}^{n}}$=n+$\frac{1}{{2}^{n}}$,将等式转化成求得等差数列和等比数列前n项和公式,即可求得答案.
解答 解:$\frac{n•{2}^{n}+1}{{2}^{n}}$=n+$\frac{1}{{2}^{n}}$,
$\frac{3}{2}$+$\frac{9}{4}$+$\frac{25}{8}$+$\frac{65}{16}$+…+$\frac{n•{2}^{n}+1}{{2}^{n}}$,
=1+2+3+…+n+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$,
=$\frac{n(n+1)}{2}$+$\frac{\frac{1}{2}-\frac{1}{{2}^{n+1}}}{1-\frac{1}{2}}$,
=$\frac{{n}^{2}+n+2}{2}$-$\frac{1}{{2}^{n}}$,
故答案为:$\frac{{n}^{2}+n+2}{2}$-$\frac{1}{{2}^{n}}$.
点评 本题考查等差数列等比数列前n项和公式,考查转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “φ=$\frac{π}{2}$”是“函数y=sin(2x+ϕ)为偶函数”的充要条件 | |
| B. | 若“p且q”为假,则p,q至少有一个是假命题 | |
| C. | 命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0” | |
| D. | 当a<0时,幂函数y=xa在(0,+∞)上是单调递减 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com