精英家教网 > 高中数学 > 题目详情
9.在△ABC中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,且∠BAC=30°,则△ABC的面积为1.

分析 运用向量的数量积的定义,可得|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos30°=2$\sqrt{3}$,即有|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=4,再由三角形的面积公式计算即可得到所求值.

解答 解:由$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,且∠BAC=30°,
可得|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos30°=2$\sqrt{3}$,
即有|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|=4,
可得△ABC的面积为$\frac{1}{2}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|sin30°=$\frac{1}{2}$•4•$\frac{1}{2}$=1.
故答案为:1.

点评 本题考查向量的数量积的定义,考查三角形的面积公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=sin(2x+φ)(-π<φ<0)为偶函数,则函数f(x)在区间$[0,\frac{π}{4}]$上的取值范围是(  )
A.[-1,0]B.$[-\frac{{\sqrt{2}}}{2},0]$C.$[0,\frac{{\sqrt{2}}}{2}]$D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,且a2+a7+a12=24,则S13=(  )
A.52B.78C.104D.208

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某个容量为100的样本,频率分布直方图如图所示:

(1)求出b的值;
(2)根据频率分布直方图分别估计样本的众数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校举行的数学知识竞赛中,将参赛学生的成绩在进行整理后分成5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
(1)求成绩在50-70分的频率是多少;
(2)求这次参赛学生的总人数是多少;
(3)求这次数学竞赛成绩的平均分的近似值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,f(x)与g(x)表示同一函数的是(  )
A.f(x)=x-1与g(x)=$\sqrt{{x}^{2}-2x+1}$B.f(x)=x与g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=x与g(x)=$\root{3}{x^3}$D.f(x)=$\frac{{x}^{2}-4}{x-2}$与g(x)=x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式x2+x<$\frac{a}{b}$+$\frac{b}{a}$ 对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是(  )
A.(-2,0)B.(-∞,-2)∪(1,+∞)C.(-2,1)D.(-∞,-4)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.化简$\sqrt{9{x^2}-6x+1}-{({\sqrt{3x-5}})^2}$,结果是(  )
A.6x-6B.-6x+6C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量:$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosy,siny),$\overrightarrow{c}$=(sinx,cosx),|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{2\sqrt{5}}{5}$.
(1)求cos(x-y)的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{c}$的图象向左平移m(m>0)个单位后,得到函数g(x)的图象关干y轴对称,求实数m的最小值.

查看答案和解析>>

同步练习册答案