精英家教网 > 高中数学 > 题目详情
16.已知直线x=$\frac{π}{6}$是函数f(x)=sin(2x+φ(0<φ<$\frac{π}{2}$)图象的一条对称轴.
(1)求函数f(x)的解析式;          
(2)求函数f(-x)的单调增区间;
(3)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

分析 (1)由直线x=$\frac{π}{6}$是函数f(x)图象的一条对称轴,求出φ的值,即得f(x)的解析式;
(2)利用正弦函数的图象与性质即可求出f(-x)的单调增区间;
(3)根据x的取值范围,求出sin(2x+$\frac{π}{6}$)的取值范围即可.

解答 解:(1)∵直线x=$\frac{π}{6}$是函数f(x)=sin(2x+φ)图象的一条对称轴,
∴2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
解得φ=kπ+$\frac{π}{6}$;
又0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴$f(x)=sin(2x+\frac{π}{6})$;
(2)f(-x)=sin(-2x+$\frac{π}{6}$)=-sin(2x-$\frac{π}{6}$),
令$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{3π}{2}$+2kπ,k∈Z,
解得$\frac{π}{3}$+kπ≤x≤$\frac{5}{6}$π+kπ,k∈Z,
∴函数f(-x)的增区间为$[kπ+\frac{π}{3},kπ+\frac{5}{6}π],k∈Z$;
(3)∵x∈[-$\frac{π}{6}$,$\frac{π}{4}$],
∴2x∈[-$\frac{π}{3}$,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1,
∴f(x)的值域为$[-\frac{1}{2},1]$.

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“所有4的倍数都是2的倍数,某数是4的倍数,故该数是2的倍数”上述推理(  )
A.小前提错误B.结论错误C.大前提错误D.正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为2的正方形,则此四棱锥的体积为(  )
A.4B.$6\sqrt{2}$C.12D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.2015年高中生技能大赛中三所学校分别有3名、2名、1名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mx-(m+2)lnx-$\frac{2}{x}$,g(x)=x2+mx+1,m∈R.
(1)当m<0时,
①求f(x)的单调区间;
②若存在x1,x2∈[1,2],使得f(x1)-g(x2)≥1成立,求m的取值范围;
(2)设h(x)=$\frac{lnx+1}{{e}^{x}}$的导函数h′(x),当m=1时,求证[g(x)-1]h′(x)<1+e-2(其中e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=ax2+bx+c(a≠0)的图象与直线l交于两点A(t,t3-t),B(2t2+3t,t3+t2),其中t≠0且t≠-1,则f'(t2+2t)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等腰直角三角形△ABC的斜边为BC,则向量$\overrightarrow{AB}$与$\overrightarrow{BC}$夹角的大小为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.研究函数f(x)=$\frac{1}{{x}^{2}+4x+3}$有无最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,△ABC是圆O的内接三角形,PA是圆O的切线,A为切点,PB交AC于点E,交圆O于点D,若PE=PA,∠ABC=60°,且PD=1,PB=9,求EC.

查看答案和解析>>

同步练习册答案