分析 由题意,将A,B坐标带入函数f(x)=ax2+bx+c,找到a,b与t的关系.在求导函数,再值f'(t2+2t)计算
解答 解:由题意:A(t,t3-t),B(2t2+3t,t3+t2)在函数f(x)=ax2+bx+c上,
则有:f(t)=at2+bt+c=t3-t…①,f(2t2+3t)=a(2t2++3t)2+b(2t2+3t)+c=t3+t2…②
那么:②-①得:4at2(t2+3t+2)+2bt(t+1)=t(t+1)
化简:4at2(t+12bt(t+1)=t(t+1)
解得:4at(t+2)+2b=1
∵f(x)=ax2+bx+c
∴f′(x)=2ax+b
f'(t2+2t)=2a(t2+2t)+b
=2at(t+2)+6
=$\frac{1}{2}$[4at(t+2)+2b]
=$\frac{1}{2}$
故答案为$\frac{1}{2}$.
点评 本题考查了导函数定义中的一个知识点,二次函数与直线交点的中点横坐标的导函数值就是直线AB的斜率.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1-2i | B. | -1+2i | C. | 1+2i | D. | 1-2i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com