精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=ax2+bx+c(a≠0)的图象与直线l交于两点A(t,t3-t),B(2t2+3t,t3+t2),其中t≠0且t≠-1,则f'(t2+2t)的值为$\frac{1}{2}$.

分析 由题意,将A,B坐标带入函数f(x)=ax2+bx+c,找到a,b与t的关系.在求导函数,再值f'(t2+2t)计算

解答 解:由题意:A(t,t3-t),B(2t2+3t,t3+t2)在函数f(x)=ax2+bx+c上,
则有:f(t)=at2+bt+c=t3-t…①,f(2t2+3t)=a(2t2++3t)2+b(2t2+3t)+c=t3+t2…②
那么:②-①得:4at2(t2+3t+2)+2bt(t+1)=t(t+1)
              化简:4at2(t+12bt(t+1)=t(t+1)
              解得:4at(t+2)+2b=1
∵f(x)=ax2+bx+c
∴f′(x)=2ax+b
f'(t2+2t)=2a(t2+2t)+b
=2at(t+2)+6
=$\frac{1}{2}$[4at(t+2)+2b]
=$\frac{1}{2}$
故答案为$\frac{1}{2}$.

点评 本题考查了导函数定义中的一个知识点,二次函数与直线交点的中点横坐标的导函数值就是直线AB的斜率.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度5$\sqrt{3}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,⊙O的半径为 4,线段AB与⊙O相交于点C、D,AC=2,∠BOD=∠A,OB与⊙O相交于点E.
(Ⅰ) 求BD长; 
(Ⅱ)当CE⊥OD时,求证:AO=AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z=$\frac{1+i}{2-i}$,则|z|=$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线x=$\frac{π}{6}$是函数f(x)=sin(2x+φ(0<φ<$\frac{π}{2}$)图象的一条对称轴.
(1)求函数f(x)的解析式;          
(2)求函数f(-x)的单调增区间;
(3)求函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(2-a)lnx-2ax-$\frac{1}{x}$,
(1)试讨论f(x)的单调性;
(2)如果当x>1时,f(x)<-2a-1,求实数a的取值范围;
(3)记函数g(x)=f(x)+(a-4)lnx+3ax-$\frac{3a+1}{x}$,若g(x)在区间[1,4]上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a为实数,若复数z=(a2-9)+(a+3)i为纯虚数,则$\frac{{a+{i^{19}}}}{1+i}$的值为(  )
A.-1-2iB.-1+2iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点(1,0)且与直线x-y+2=0垂直的直线方程是(  )
A.x-y+1=0B.x-y-1=0C.x+y+1=0D.x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若sin(45°+α)=$\frac{5}{13}$,则sin(225°+α)=-$\frac{5}{13}$.

查看答案和解析>>

同步练习册答案