精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,其右准线上l上存在点A(点A在x轴上方),使△AF1F2为等腰三角形.
(1)求离心率e的范围;
(2)若椭圆上的点(1,
2
2
)
到两焦点F1,F2的距离之和为2
2
,求△AF1F2的内切圆的方程.
(1)由题意有F1(-c,0),F2(c,0),l:x=
a2
c
.(2分)
A(
a2
c
y0)
,由△AF1F2为等腰三角形,则只能是F1F2=F2A,又F2A>
a2
c
-c

2c>
a2
c
-c
,所以
3
3
<e<1
.(6分)
(2)由题意得椭圆的方程为
x2
2
+y2=1
,其离心率为
2
2
3
3
,此时F1(-1,0),F2(1,0),l:x=2.
由F1F2=F2A,可得y0=
3
.(10分)
设内切圆的圆心B(x1,y1),AF1:x-
3
y+1=0
BF2:y=-
3
(x-1)

因为△AF1F2为等腰三角形,所以△AF1F2的内切圆的圆心点B到AF1的距离等于点B到x轴的距离,即
-x1+
3
y1+1
2
=y1
,①
由点B在直线BF2上,所以y1=-
3
(x1-1)
,②
由①②可得
x1=
3
-1
y1=2
3
-3

所以△AF1F2的内切圆的方程为(x+1-
3
)2+(y+3-2
3
)2=(2
3
-3)2
.(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案