精英家教网 > 高中数学 > 题目详情

【题目】下列结论正确的是

在某项测量中,测量结果服从正态分布.若内取值的概率为0.35,则内取值的概率为0.7;

以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则

已知命题若函数上是增函数,则的逆否命题是,则函数上是减函数是真命题;

设常数,则不等式恒成立的充要条件是.

【答案】①②④

【解析】

试题分析:对于服从正态分布,所以曲线的对称轴为,又内取值的概率为0.35,所以内取值的概率为,故正确;对于,又因为,所以,故正确;对于命题若函数上是增函数,则的逆否命题是,则函数上不是增函数,故错;对于,则函数的对称轴,时,,这时在区间上恒成立,若在区间上恒成立,则,即,故正确;所以正确命题的序号为①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:生产1单位试剂需要原料费50元;支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;后续保养的平均费用是每单位试剂的总产量为单位,.

1把生产每单位试剂的成本表示为的函数关系,并求的最小值;

2如果产品全部卖出,据测算销售额关于产量单位的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆及点

(1)若直线平行于,与圆相交于两点,,求直线的方程;

(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设是首项为1,公比为3的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,是下底面圆的直径是上底面圆的直径是圆台的一条母线

(1)已知分别为的中点求证平面

(2)已知求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的左、右焦点分别为,点在椭圆上,,且的面积为4.

(1)求椭圆的方程;

(2)点是椭圆上任意一点,分别是椭圆的左、右顶点,直线与直线分别交于两点,试证:以为直径的圆交轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示中的最大值,如.已知函数.

(1)设,求函数上零点的个数;

(2)试探究是否存在实数,使得恒成立?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)若在区间上为增函数,求的取值范围;

)当时,证明:

)当时,断方程是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点x轴的上方,直线分别交直线于点.

1)若点,求椭圆的方程及ABC的面积;

2)若为动点,设直线的斜率分别为.

试问是否为定值?若为定值,请求出;否则,请说明理由;

AEF的面积的最小值.

查看答案和解析>>

同步练习册答案