【题目】下列结论正确的是
①在某项测量中,测量结果服从正态分布.若在内取值的概率为0.35,则在内取值的概率为0.7;
②以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则;
③已知命题“若函数在上是增函数,则”的逆否命题是“若,则函数在上是减函数”是真命题;
④设常数,则不等式对恒成立的充要条件是.
科目:高中数学 来源: 题型:
【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;③后续保养的平均费用是每单位元(试剂的总产量为单位,).
(1)把生产每单位试剂的成本表示为的函数关系,并求的最小值;
(2)如果产品全部卖出,据测算销售额(元)关于产量(单位)的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆及点,.
(1)若直线平行于,与圆相交于,两点,,求直线的方程;
(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的圆台中,是下底面圆的直径,是上底面圆的直径,是圆台的一条母线.
(1)已知,分别为,的中点,求证:平面;
(2)已知,,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的左、右焦点分别为,,点在椭圆上,,且的面积为4.
(1)求椭圆的方程;
(2)点是椭圆上任意一点,分别是椭圆的左、右顶点,直线与直线分别交于两点,试证:以为直径的圆交轴于定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记表示中的最大值,如.已知函数,.
(1)设,求函数在上零点的个数;
(2)试探究是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点在x轴的上方,直线与分别交直线:于点、.
(1)若点,求椭圆的方程及△ABC的面积;
(2)若为动点,设直线与的斜率分别为、.
①试问是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com