分析 (1)把x=$\frac{π}{4}$代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.
(2)利用f($\frac{α}{4}$)=-$\frac{2}{5}$和函数的解析式可求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.
解答 解:(1)f($\frac{π}{4}$)=-(a+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴a+1=0,即a=-1,
∵f(x)为奇函数,
∴f(0)=(a+2)cosθ=0,
∴cosθ=0,θ=$\frac{π}{2}$.
(2)由(1)知f(x)=(-1+2cos2x)cos(2x+$\frac{π}{2}$)=cos2x•(-sin2x)=-$\frac{1}{2}sin4x$,
∴f($\frac{α}{4}$)=-$\frac{1}{2}$sinα=-$\frac{2}{5}$,
∴sinα=$\frac{4}{5}$,
∵α∈($\frac{π}{2}$,π),
∴cosα=-$\frac{3}{5}$,
∴sin(α+$\frac{π}{3}$)=sinαcos$\frac{π}{3}$+cosαsin$\frac{π}{3}$=$\frac{4-3\sqrt{3}}{10}$.
点评 本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | m<-3 | B. | m>3 | C. | m<3 | D. | m>-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{10}}{10}$ | B. | -$\frac{\sqrt{10}}{10}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{3\sqrt{10}}{10}$或-$\frac{\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心,外心,内心 | B. | 重心,垂心,内心 | C. | 重心,垂心,外心 | D. | 内心,外心,重心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com