精英家教网 > 高中数学 > 题目详情
2.下面程序框图中,若输入互不相等的三个正实数a,b,c(abc≠0),要求判断△ABC的形状,则空白的判断框应填入(  )
A.a2+b2>c2B.a2+c2>b2C.b2+c2>a2D.b2+a2=c2

分析 由流程图的功能知是比较a、b、c中的最大数用变量a表示并判断和输出是否为锐角三角形,
分析它们的三个判断框即可得出结论.

解答 解:由流程图可知比较a、b、c中的最大数用变量a表示并判断和输出是否为锐角三角形,
第一个判断框是判断a与b的大小,并把较大值赋值变量a;
第二个判断框是判断最a与c的大小,并将最大数赋值变量a;
第三个判断框是判断是否为锐角三角形,应填入:b2+c2>a2?.
故选:C.

点评 本题考查了算法与程序框图的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.圆x2+y2+4x-2y+$\frac{24}{5}$=0上的点到直线3x+4y=0的距离的最大值是(  )
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2+\sqrt{5}}{5}$D.$\frac{2-\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列的通项公式;
(2)设bn=$\frac{({a}_{n})^{2}-1}{{S}_{n}}$,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个算法的流程图,若输入x的值为4,则输出y的值   是(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=2
(1)求$\frac{3sinα-2cosα}{sinα-cosα}$的值;
(2)若α是第三象限角,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a,b,c,d为正数,且a+b+c+d=1.证明:
(1)${a^2}+{b^2}+{c^2}+{d^2}≥\frac{1}{4}$;
(2)$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{d}+\frac{d^2}{a}≥1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l1上的点满足ax+4y+6=0,直线l2上的点满足($\frac{3}{4}$a+1)x+ay-$\frac{3}{2}$=0.试求:
(Ⅰ)a为何值时l1∥l2
(Ⅱ)a为何值时l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若i是虚数单位,则复数$z=\frac{{1-\sqrt{3}i}}{2i}$在复平面内所对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

同步练习册答案