精英家教网 > 高中数学 > 题目详情
7.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点FB1B的中点即为所求,由C1D⊥平面AA1BB,AB1?平面AA1B1B,则C1D⊥AB1,AB1⊥DF,DF∩C1D=D,满足线面垂直的判定定理,则AB1⊥平面C1DF

解答 解:作DE⊥AB1交AB1于E,延长DE交BB1于F,连接C1F,则AB1⊥平面C1DF,点F即为所求.
∵C1D⊥平面AA1B1B,AB1?平面AA1B1B,
∴C1D⊥AB1.又AB1⊥DF,DF∩C1D=D,
∴AB1⊥平面C1DF.
四边形AA1B1B为正方形,此时点F为B1B的中点.
如图则有△AA1B1∽DB1F,即$\frac{A{A}_{1}}{D{B}_{1}}=\frac{{A}_{1}B}{{B}_{1}F}$⇒${B}_{1}F=\frac{1}{2}$.
故选:A

点评 本题主要考查了直线与平面垂直的判定.应熟练记忆直线与平面垂直的判定定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<3}\\{lo{g}_{3}x,x≥3}\end{array}\right.$,则f(f(9))=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算$\int_0^2{({\sqrt{4-{x^2}}-2x})dx=}$(  )
A.2π-4B.π-4C.ln2-4D.ln2-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:$\frac{tan(2π+α)}{{tan(α+π)-cos(-α)+sin(\frac{π}{2}-α)}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面程序框图中,若输入互不相等的三个正实数a,b,c(abc≠0),要求判断△ABC的形状,则空白的判断框应填入(  )
A.a2+b2>c2B.a2+c2>b2C.b2+c2>a2D.b2+a2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.马路上亮着编号为1,2,3,4,5,6,7,8,9,10的10只路灯,为节约用电,现要求把其中的两只灯关掉,但不能同时关掉相邻的两只,也不能关掉两端的路灯,则满足条件的关灯方法共有几种(  )
A.12B.18C.21D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC中,a,b,c分别是角A,B,C所对的边,2bsinB=(2a+c)sinA+(2c+a)sinC
(1)求∠B的大小;
(2)若a=4,A=45°,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.向量$\overrightarrow{AB}$,$\overrightarrow{CD}$,$\overrightarrow{EF}$在正方形网格中的位置如图所示,则(  )
A.$\overrightarrow{EF}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{CD}$B.$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{AB}$$+\frac{1}{3}$$\overrightarrow{CD}$C.$\overrightarrow{EF}$=$\overrightarrow{AB}$+$\overrightarrow{CD}$D.$\overrightarrow{EF}$=$\frac{2}{3}$$\overrightarrow{AB}$$+\frac{2}{3}$$\overrightarrow{CD}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.任取$θ∈(0,\frac{3}{2}π)$,则使sinθ>0的概率是$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案