精英家教网 > 高中数学 > 题目详情
17.任取$θ∈(0,\frac{3}{2}π)$,则使sinθ>0的概率是$\frac{2}{3}$.

分析 任取$θ∈(0,\frac{3}{2}π)$,使sinθ>0的θ∈(0,π),由此利用几何概型能求出使sinθ>0的概率.

解答 解:∵任取$θ∈(0,\frac{3}{2}π)$,
∴使sinθ>0的θ∈(0,π),
∴使sinθ>0的概率是p=$\frac{π}{\frac{3}{2}π}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查概率的求法,涉及到三角函数、几何概型等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E,要使AB1⊥平面C1DF,则线段B1F的长为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.7名师生站成一排照相留念,其中老师1人,男生4人,女生2人,在下列情况下,各有不同站法多少种?
(1)两名女生必须相邻而站;
(2)4名男生互不相邻;
(3)若4名男生身高都不等,按从高到低的顺序站;
(4)老师不站中间,女生不站两端.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\frac{{\sqrt{x+2}}}{{{2^x}-1}}$的定义域为(  )
A.[-2,+∞)B.(-2,+∞)C.(-2,0)∪(0,+∞)D.[-2,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若i是虚数单位,则复数$z=\frac{{1-\sqrt{3}i}}{2i}$在复平面内所对应的点位于(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{2-cos[\frac{π}{4}(1-x)]+sin[\frac{π}{4}(1-x)]}{{x}^{2}+4x+5}$(-4≤x≤0),则f(x)的最大值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A=[-3,3],B=[-2,2],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;
(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于$\sqrt{2}$的概率.
(提示:可以考虑采用数形结合法)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在等差数列{an}中,已知a2=2,a4=4
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求数列{bn}前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)是定义在R上的函数,其导函数f'(x)满足f'(x)<f(x)(x∈R),则(  )
A.f(2)>e2f(0),f(2001)>e2001f(0)B.f(2)<e2f(0),f(2001)>e2001f(0)
C.f(2)>e2f(0),f(2001)<e2001f(0)D.f(2)<e2f(0),f(2001)<e2001f(0)

查看答案和解析>>

同步练习册答案