精英家教网 > 高中数学 > 题目详情
1.2000年5月,位于咸阳市的陕西省石化建设公司在其院后取土时,发现西汉古墓3座,咸阳市文物考古研究所派人对其进行了清理,发现了较多的文物.其中有一件串饰,如图所示的是一串黑白相间排列的珠子.请问以左边第一颗珠子算起,按照这种规律排列下去,那么第36颗珠子的颜色是(  )
A.白色B.黑色C.白色的可比性大D.黑色的可能性大

分析 根据黑白珠子的规律进行判断即可.

解答 解:从第一个开始,每5颗珠子作为一个整体,
则前3颗为白珠子,后2颗为黑珠子,
则36颗珠子为第8组的第一个珠子,则为白色,
故选:A.

点评 本题主要考查归纳推理的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是(  )
A.90B.45C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy,直线l的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).在以O为极点,x轴正半轴为极轴建立极坐标系中,曲线C:ρ=4sinθ.
(1)当m=-1,α=30°时,判断直线l与曲线C的位置关系;
(2)当m=1时,若直线与曲l线C相交于A,B两点,设P(1,0),且||PA|-|PB||=1,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值与最小值的差为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,直线l:x+ay+a-2=0,圆M:(x-1)2+(y-1)2=1,则“a=0”是“直线l与圆M相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论正确的是①②④.(写出所有正确结论的序号)
①?x∈(-∞,1),f(x)>0;
②?x0∈R,使${a^{x_0}}$,${b^{x_0}}$,${c^{x_0}}$不能构成一个三角形的三条边长;
③若△ABC为直角三角形,对于?n∈N*,f(2n)>0恒成立.
④若△ABC为钝角三角形,则?x0∈(1,2),使f(x0)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足$\left\{{\begin{array}{l}{x≥1}\\{x+y≤5}\\{x-2y≤0}\end{array}}\right.$,则目标函数z=y-lnx的最小值为1-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l:(2+m)x+(1-2m)y+4-3m=0,则直线恒过一定点M的坐标为(-1,-2),若直线l与直线x-2y-4=0垂直,则m=0.

查看答案和解析>>

同步练习册答案