精英家教网 > 高中数学 > 题目详情
2.若一个圆柱的轴截面是一个面积为16的正方形,则该圆柱的表面积是24π.

分析 利用一个圆柱的轴截面是一个面积为16的正方形,可得圆柱的底面半径为2,高为4,即可求出该圆柱的表面积.

解答 解:∵一个圆柱的轴截面是一个面积为16的正方形,
∴圆柱的底面半径为2,高为4,
∴该圆柱的表面积是2π•22+2π•2•4=24π,
故答案为:24π.

点评 本题考查圆柱的表面积,考查学生的计算能力,确定圆柱的底面半径为2,高为4是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,抛物线C:y2=8ax的焦点为F.若在E的渐近线上存在点P,使得$\overrightarrow{AP}⊥\overrightarrow{FP}$,则E的离心率的取值范围是(  )
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.$[{\frac{{3\sqrt{2}}}{4},+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中点.
(1)求证:平面A1CM⊥平面ABB1A1
(2)求点M到平面A1CB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.设EF与BD交于点O,过点P作PH⊥BD,垂足为H.
(Ⅰ)求证:PH⊥底面BFDE;
(Ⅱ)若四棱锥P-BFDE的体积为12,求正方形ABCD的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 为坐标原点,b>0,若 A,B,C 三点共线,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某次运动会的游泳比赛中,已知5名游泳运动员中有1名运动员服用过兴奋剂,需要通过检验尿液来确定因服用过兴奋剂而违规的运动员,尿液检验结果呈阳性的即为服用过兴奋剂的运动员,呈阴性则没有服用过兴奋剂,组委会提供两种检验方法:
方案A:逐个检验,直到能确定服用过兴奋剂的运动员为止.
方案B:先任选3名运动员,将他们的尿液混在一起检验,若结果呈阳性则表明违规的运动员是这3名运动员中的1名,然后再逐个检验,直到能确定为止;若结果呈阴性则在另外2名运动员中任选1名检验.
(Ⅰ)求依方案A所需检验次数不少于依方案B所需检验次数的概率;
(Ⅱ)ξ表示依方案B所需检验次数,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且$|{\overrightarrow{OP}}|=\frac{{\sqrt{7}}}{2},\overrightarrow{P{F_1}}•{\overrightarrow{PF}_2}=\frac{3}{4}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)过点$S({0,\frac{1}{3}})$,且斜率为k的直线l交椭圆于A,B两点,在y轴上是否存在定点M,使得以AB为直径的圆恒过这个定点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆 C:(x-a)2+(y-2)2=4(a>0),若倾斜角为45°的直线l过抛物线y2=-12x 的焦点,且直线l被圆C截得的弦长为2$\sqrt{3}$,则a等于(  )
A.$\sqrt{2}$+1B.$\sqrt{2}$C.2±$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|,x∈R.
(Ⅰ)解不等式f(x)<|x|+1;
(Ⅱ)若对于x,y∈R,有|x-y-1|≤$\frac{1}{3}$,|2y+1|≤$\frac{1}{6}$,求证:f(x)<1.

查看答案和解析>>

同步练习册答案