【题目】如图,在直角
中,
,
通过
以直线
为轴顺时针旋转
得到(
).点
为斜边
上一点.点
为线段
上一点,且
.
![]()
(1)证明:
平面
;
(2)当直线
与平面
所成的角取最大值时,求二面角
的正弦值.
【答案】(1)见解析;(2)![]()
【解析】
(1)先算出
的长度,利用勾股定理证明
,再由已知可得
,利用线面垂直的判定定理即可证明;
(2)由(1)可得
为直线
与平面
所成的角,要使其最大,则
应最小,可得
为
中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.
(1)在
中,
,由余弦定理得
,
∴
,
∴
,
由题意可知:∴
,
,
,
∴
平面
,
平面
,∴
,
又
,
∴
平面
.
(2)以
为坐标原点,以
,
,
的方向为
,
,
轴的正方向,建立空间直角坐标系.
![]()
∵
平面
,∴
在平面
上的射影是
,
∴
与平面
所成的角是
,∴
最大时,即
,点
为
中点.
,
,
,
,
,
,
,设平面
的法向量
,
由
,得
,令
,得
,
所以平面
的法向量
,
同理,设平面
的法向量
,由
,得
,
令
,得
,所以平面
的法向量
,
∴
,![]()
,
故二面角
的正弦值为
.
科目:高中数学 来源: 题型:
【题目】勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为
,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号,某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据
,如表所示:
试销单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量y(件) | q | 84 | 83 | 80 | 75 | 68 |
已知![]()
(Ⅰ)求出q的值;
(Ⅱ)已知变量x,y具有线性相关关系,求产品销量y(件)关于试销单价x(元)的线性回归方程
;
(Ⅲ)用
表示用(Ⅱ)中所求的线性回归方程得到的与
对应的产品销量的估计值.当销售数据
对应的残差的绝对值
时,则将销售数据
称为一个“好数据”.现从6个销售数据中任取3个,求“好数据”个数
的分布列和数学期望
.
(参考公式:线性回归方程中
最小二乘估计分别为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】临近开学季,某大学城附近的一款“网红”书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量
(个)与时间
(天)的关系如下表所示:
时间( | 1 | 4 | 7 | 11 | 28 | … |
日销售量( | 196 | 184 | 172 | 156 | 88 | … |
未来1个月内,前15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数),后15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数).
(1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据
(个)与
(天)的关系式;
(2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠
元利润
给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
的参数方程为
(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(1)求
的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到
距离的最大值及该点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下图表展示了2月14日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是( )
![]()
A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大
B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数
C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000
D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且焦距为4
(1)求椭圆
的标准方程:
(2)设
为直线
上一点,
为椭圆
上一点.以
为直径的圆恒过坐标原点
.
(i)求
的取值范围
(ii)是否存在圆心在原点的定圆恒与直线
相切?若存在,求出该定圆的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com