精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论的单调性;

2)若在区间存在一个,使得成立,求的取值范围.

【答案】(1)答案见解析;(2).

【解析】

(1)求出的导数,令,分三种情况讨论导数的符号从而确定的单调区间;(2) 整理得,令,设函数的零点为可得,分析的单调性从而求出最小值,根据不等式成立的充要条件即可求得a的取值范围.

(1)

①若

则二次函数开口向下且与轴无交点,

时,

函数上单调递减;

②若

时,开口向下且对称轴为

时,

函数上单调递减;

时,开口向下且对称轴为

时,

函数上单调递减;

③若

方程的根为

时,因为开口向下,

所以当时,,函数单调递减;

时,因为

所以当时,

,函数单调递减;

时,

,函数单调递增;

综上所述,当时,上单调递减;

时,在区间上单调递增,

在区间上单调递减.

(2)根据题意,若

化简得,令

,令可得

设函数的零点为,则

单调递增,

所以时,单调递减;

时,单调递增,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系xOy中,直线C1的参数方程为t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ

)求直线C1的普通方程和圆C2的圆心的极坐标;

)设直线C1和圆C2的交点为AB,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线上的点均在曲线外,且对上任意一点到直线的距离等于该点与曲线上点的距离的最小值.

(1)求动点的轨迹的方程;

(2)若点是曲线的焦点,过的两条直线关于轴对称,且分别交曲线,若四边形的面积等于,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知内角的角平分线.

(1)用正弦定理证明:

2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于与椭圆分别交于不同四点,直线的斜率满足.已知当轴重合时,.

Ⅰ)求椭圆的方程;

Ⅱ)是否存在定点使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.

【答案】(Ⅰ).

【解析】试题分析:(1)当轴重合时,垂直于轴,得,,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.

试题解析:轴重合时,, ,所以垂直于轴,得, ,椭圆的方程为.

焦点坐标分别为, 当直线斜率不存在时,点坐标为;

当直线斜率存在时,设斜率分别为, , 得:

, 所以:, 则:

. 同理:, 因为

, 所以, , 由题意知, 所以

, 设,则,即,由当直线斜率不存在时,点坐标为也满足此方程,所以点在椭圆.存在点和点,使得为定值,定值为.

考点:圆锥曲线的定义,性质,方程.

【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.

型】解答
束】
21

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=,an+1=3an-1(n∈N*).

(1)若数列{bn}满足bn=an-,求证:{bn}是等比数列;

(2)求数列{an}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.

(1)求角A的大小;

(2)若△ABC的面积S=,求sinB+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,存在,使得函数在区间上有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,四边形ABCD是菱形,∠BAD=60°,又PD⊥平面ABCD,点E是棱AD的中点,F在棱PC上,且AD=PD=4.

(1)证明:平面BEF⊥平面PAD;

(2)若PA∥平面BEF,求四棱锥F﹣BCDE的体积.

查看答案和解析>>

同步练习册答案