精英家教网 > 高中数学 > 题目详情
函数y=x+
1
x-2
(x>2)的最小值为(  )
A、1B、2C、3D、4
考点:基本不等式
专题:计算题,不等式的解法及应用
分析:y=x+
1
x-2
=x-2+
1
x-2
+2,利用基本不等式即可求得 函数的最值.
解答: 解:∵x>2,
∴y=x+
1
x-2
=x-2+
1
x-2
+2≥2
(x-2)•
1
x-2
+2=4,
当且仅当x-2=
1
x-2
,即x=3时取等号,
∴函数y=x+
1
x-2
(x>2)的最小值为4,
故选:D.
点评:该题考查利用基本不等式求函数的最值,属基础题,对不等式合理变形创建使用基本不等式的条件是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F,S△FCD=5,BC=10,则DE=(  )
A、
2
3
B、
8
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线y2=4x上的一个动点,则点P到点(1,1)的距离与P到该抛物线焦点的距离之和的最小值为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=2x+y的最大值是(  )
A、
5
B、2
5
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=-
1
4
x2的焦点坐标为(  )
A、(-
1
16
,0)
B、(
1
16
,0)
C、(0,1)
D、(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-
3
sin2x+2sin(x+
π
3
)cosx.
(1)求f(x)的周期;
(2)求f(x)的递减区间;
(3)说明f(x)的图象可由y=sin2x的图象经过怎样的变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知对任意的n∈N+,点(n,Sn)均在函数y=bx-1(b>0且b≠1,b均为常数)的图象上.
(1)求证:{an}是等比数列;
(2)当b=2时,记bn=
n+1
4an
(n∈N+),证明:数列{bn}的前n项和Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,且an+1=
an
3an+1
(n∈N+).
(1)证明数列{
1
an
}
是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1(n∈N+),数列{bn}的前n项和记为Tn,证明:Tn
1
6

查看答案和解析>>

同步练习册答案