精英家教网 > 高中数学 > 题目详情
已知点P是抛物线y2=4x上的一个动点,则点P到点(1,1)的距离与P到该抛物线焦点的距离之和的最小值为(  )
A、4B、3C、2D、1
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P、Q和P在准线上的射影点A三点共线时,这个距离之和最小,即可得出结论.
解答: 解:∵抛物线方程为y2=4x,
∴2p=4,可得焦点为F(1,0),准线为x=-1
设P在抛物线准线l上的射影点为A点,Q(1,1)
则由抛物线的定义,可知当P、Q、A点三点共线时,点P到点(1,1)的距离与P到该抛物线焦点的距离之和最小,
∴最小值为1+1=2.
故选:C.
点评:本题给出抛物线上的动点,求该点到定点Q和焦点F距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设BB1是正方体的一条棱,这个正方体中与BB1平行的棱有
 
条.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对相关系数r描述正确的是(  )
A、r>0表两个变量负相关
B、r>1表两个变量正相关
C、r 只能大于零
D、|r|越接近于零,两个变量相关关系越弱

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程
x=
2
csot
y=
2
sint
(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为(  )
A、ρ=
2
sin(θ+
π
4
B、ρsin(θ+
π
4
)=
2
C、ρsin(θ+
π
4
)=2
D、ρ=sin(θ+
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若原点到直线ax+by+1=0的距离为
1
2
,则两圆(x-a)2+y2=1,x2+(y-b)2=1的位置关系是(  )
A、内切B、外切C、内含D、外离

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ是钝角三角形中的最小角,则sin(θ+
π
3
)的取值范围是(  )
A、(
3
2
,1]
B、[
3
2
,1]
C、(
2
2
,1)
D、[
2
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的侧面展开图,L1、L2是两条侧面对角线,则在正方体中,L1与L2(  )
A、互相平行
B、相交
C、异面且互相垂直
D、异面且夹角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x+
1
x-2
(x>2)的最小值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=(2n+7)•3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案