(已知椭圆 经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求到直线距离的最小值.
(Ⅰ);(Ⅱ)
解析试题分析:(Ⅰ)由离心率为,得①,又过点,得②,联立①②求;
(Ⅱ)直线和圆锥曲线的位置关系问题,一般会根据已知条件结合韦达定理列式确定参数的值或者取值范围,设直线:,联立椭圆方程,消去,得关于的二次方程,设,利用韦达定理将点的坐标表示出来,,因为在椭圆上,代入椭圆方程,得的等式①,点到直线的距离为,联立①得关于,或的函数,进而求其最小值,再考虑斜率不存在时的情况,求最小值,然后和斜率存在时候的最小值比较大小,得结论.
试题解析:(Ⅰ)由已知,所以, ① 又点在椭圆上,所以, ② 由①②解之得,故椭圆的方程为 ;
(Ⅱ)当直线有斜率时,设时,则由
消去得,
, ③
设则,由于点在椭圆上,所以,从而,化简得,经检验满足③式,又点到直线的距离为:,并且仅当时等号成立;当直线无斜率时,由对称性知,点一定在轴上,从而点为,直线为,所以点到直线的距离为1,所以点到直线的距离最小值为.
考点:1、椭圆的标准方程;2、韦达定理;3、点到直线的距离.
科目:高中数学 来源: 题型:解答题
设直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线过点P(2,1),夹在两已知直线和之间的线段AB恰被点P平分.
(1)求直线的方程;
(2)设点D(0,m),且AD//,求:ABD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系xoy的原点为极点,OX为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为 ρsin(θ+)="0," 求与直线l垂直且与曲线C相切的直线m的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)已知直线:
(1)求证:不论实数取何值,直线总经过一定点.
(2)为使直线不经过第二象限,求实数的取值范围.
(3)若直线与两坐标轴的正半轴围成的三角形面积最小,求的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com