【题目】已知函数
.
(1)若
,求
的最小值;
(2)若
,且
,证明:
.
【答案】(1)
;(2)证明见解析
【解析】
(1)当
时,
,先求导可得
,设
,利用导函数可判断
在
上单调递增,由
,即可判断
的单调性,进而求解;
(2)先求导可得
,容易得到
在
上单调递增,由
,即可判断
在
上单调递减,在
上单调递增,设
,则
,
,设
,利用导函数可判断
在
上单调递增,则
,即
,则可得
,即
,进而由
的单调性求证即可.
(1)解:当
时,
,
所以
,
设
,则
,所以
在
上单调递增,
即
在
上单调递增,
因为
,
所以当
时,
;当
时,
,
因此
在
上单调递减,在
上单调递增,
所以
.
(2)证明:
,则
,所以
在
上单调递增,因为
,
所以当
时,
;当
时,
,
因此,
在
上单调递减,在
上单调递增,
由
,不妨设
,则
,
,
令![]()
,
则![]()
![]()
![]()
,
当
时,
,
故
,所以
在
上单调递增;
所以当
时,
即
时,
,
因此
,
又
,所以
,
因为
,
,
在
上单调递增,
所以
,即
,故
.
科目:高中数学 来源: 题型:
【题目】某地开发一片荒地,如图,荒地的边界是以C为圆心,半径为1千米的圆周.已有两条互相垂直的道路OE,OF,分别与荒地的边界有且仅有一个接触点A,B.现规划修建一条新路(由线段MP,
,线段QN三段组成),其中点M,N分别在OE,OF上,且使得MP,QN所在直线分别与荒地的边界有且仅有一个接触点P,Q,
所对的圆心角为
.记∠PCA=
(道路宽度均忽略不计).
![]()
(1)若
,求QN的长度;
(2)求新路总长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(t为参数,
).在以坐标原点为极点、x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为
.
(1)若点
在直线l上,求线l的直角坐标方程和曲线C的直角坐标方程;
(2)已知
,点P在直线l上,点Q在曲线C上,且
的最小值为
,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点S( -2,0) ,T(2,0),动点P为平面上一个动点,且直线SP、TP的斜率之积为
.
(1)求动点P的轨迹E的方程;
(2)设点B为轨迹E与y轴正半轴的交点,是否存在直线l,使得l交轨迹E于M,N两点,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数集
,其中
,且
,若对
,
与
两数中至少有一个属于
,则称数集
具有性质
.
(1)分别判断数集
与数集
是否具有性质
,说明理由;
(2)已知数集
具有性质
,判断数列
,
,…,
是否为等差数列,若是等差数列,请证明;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点F2是双曲线
的右焦点,动点A在双曲线左支上,直线l1:tx﹣y+t﹣2=0与直线l2:x+ty+2t﹣1=0的交点为B,则|AB|+|AF2|的最小值为( )
A.8B.
C.9D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①
,②
分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.
![]()
根据收集到的数据,计算得到如下值:
|
|
|
|
|
|
|
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中
;
;
;
;
(1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;
(2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.
(参考数据:
,
,
,
)
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布N(μ,σ2),并把质量差在(μ﹣σ,μ+σ)内的产品为优等品,质量差在(μ+σ,μ+2σ)内的产品为一等品,其余范围内的产品作为废品处理.优等品与一等品统称为正品.现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:
![]()
(1)根据频率分布直方图,求样本平均数![]()
(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数
作为μ的近似值,用样本标准差s作为σ的估计值,求该厂生产的产品为正品的概率.(同一组中的数据用该组区间的中点值代表)
[参考数据:若随机变量ξ服从正态分布N(μ,σ2),则:P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.
(3)假如企业包装时要求把3件优等品球和5件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件数为X,求X的分布列以及期望值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com