【题目】已知定点S( -2,0) ,T(2,0),动点P为平面上一个动点,且直线SP、TP的斜率之积为
.
(1)求动点P的轨迹E的方程;
(2)设点B为轨迹E与y轴正半轴的交点,是否存在直线l,使得l交轨迹E于M,N两点,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2
。
(1)求椭圆的方程;
(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为
,求直线l的方程。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
中,
,
,
,
.有以下结论:①三棱锥
的表面积为
;②三棱锥
的内切球的半径
;③点
到平面
的距离为
;其中正确的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
.(
为参数)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,点
的极坐标为
,直线
的极坐标方程为
.
(1)求
的直角坐标和 l的直角坐标方程;
(2)把曲线
上各点的横坐标伸长为原来的
倍,纵坐标伸长为原来的
倍,得到曲线
,
为
上动点,求
中点
到直线
距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知边长为2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,
,
.
![]()
(1)求证:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com