【题目】(本小题满分12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=
,B=A+
.
(1)求b的值;
(2)求△ABC的面积.
【答案】(1)
. (2)
【解析】
试题分析:(1) 已知两角及对边求另一对边,应该利用正弦定理,在△ABC中,sin A=
,sin B=sin
=cos A=
,由正弦定理可得,b=![]()
(2)三角形面积公式选用S=
absin C,则需求出sin C,sin C=sin[π-(A+B)] =sin(A+B) =sin Acos B+cos Asin B=
×
+
×
=
.因此△ABC的面积S=
absin C=
×3×
×
=
.
试题解析:(1)在△ABC中,
由题意知,sin A=![]()
又因为B=A+
,
所以sin B=sin
=cos A=![]()
由正弦定理可得,b=
6分
(2)由B=A+
得cos B=cos
=-sin A=-
.
由A+B+C=π,得C=π-(A+B),
所以sin C=sin[π-(A+B)]
=sin(A+B)
=sin Acos B+cos Asin B
=
×
+
×![]()
=
.
因此△ABC的面积S=
absin C=
×3×
×
=
. 12分
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<
)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且|OQ|=2,|OP|=
,|PQ|=
. ![]()
(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f(x)g(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得 =80, =20, i=184, =720.
(1)求家庭的月储蓄y对月收入x的线性回归方程
;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程
中,
,其中
为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP=
,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ= . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.
(Ⅰ)求证:AC⊥B1C;
(Ⅱ)求证:AC1∥平面B1CD![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆心为
,定点
,
为圆
上一点,线段
上一点
满足
,直线
上一点
,满足
.
(Ⅰ)求点
的轨迹
的方程;
(Ⅱ)
为坐标原点,
是以
为直径的圆,直线
与
相切,并与轨迹
交于不同的两点
.当
且满足
时,求
面积
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com