精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(x2-1)-xlnx.
(I)当a=
12
时,求函数f(x)
的单调区间;
(Ⅱ)当x≥1时,f(x)≥0,求a的取值范围.
分析:(Ⅰ)把a的值代入函数解析式,然后求函数的导函数,求出导函数的零点,由导函数的零点把定义域分段,根据导函数在各区间段内的符号求出原函数的单调区间;
(Ⅱ)求出原函数的导函数,根据a的不同取值范围对导函数的符号加以判断,只有当a≥
1
2
时,f′(x)=(2a-1)x+(x-lnx-1)>0,f(x)是增函数,此时f(x)≥f(1)=0,不等式恒成立.对于0<a<
1
2
和a≤0都不能满足当x≥1时,f(x)≥0恒成立,从而求得a的范围.
解答:解:(Ⅰ)当a=
1
2
时,f(x)=
1
2
(x2-1)-xlnx
,所以f′(x)=x-lnx-1.
函数f(x)的定义域为(0,+∞).
设g(x)=x-lnx-1,则g′(x)=1-
1
x

令g′(x)=0,得x=1.
当x∈(0,1)时,g′(x)<0,函数g(x)是减函数;
当x∈(1,+∞)时,g′(x)>0,函数g(x)是增函数.
函数g(x)的最小值为g(1)=0.
所以g(x)=f′(x)≥0(仅当x=1时取等号),f(x)在(0,+∞)是增函数.
(Ⅱ)由函数f(x)=a(x2-1)-xlnx,则f′(x)=2ax-lnx-1.
(1)若a≥
1
2
,则由(Ⅰ)知,f′(x)=(2a-1)x+(x-lnx-1)>0,f(x)是增函数,
此时f(x)≥f(1)=0,不等式恒成立.
(2)若0<a<
1
2
,设h(x)=2ax-lnx-1,h′(x)=2a-
1
x

当x∈(1,
1
2a
)时,h′(x)<0,函数h(x)是减函数.
则f′(x)=h(x)<h(1)=2a-1<0,f(x)在(1,
1
2a
)是减函数.
这时f(x)<f(1)=0,不等式不成立.
(3)若a≤0时,则当x∈(1,+∞)时,f′(x)<0,f(x)在(1,+∞)是减函数,
此时f(x)<f(1)=0,不等式不成立.
综上所述,a的取值范围是[
1
2
,+∞).
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.考查了利用导数研究含有参数的不等式恒成立问题,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案