精英家教网 > 高中数学 > 题目详情
某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是
 
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,求出在该次数学考试中成绩小于60分的频率,再求成绩小于60分的学生数.
解答: 解:根据频率分布直方图,得
在该次数学考试中成绩小于60分的频率是
(0.002+0.006+0.012)×10=0.20
∴在该次数学考试中成绩小于60分的学生数是
3000×0.20=600.
故答案为:600.
点评:本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图提供的数据,求出频率,再求出学生数,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+ax+a
ex
,其a中为常数,a≤2.
(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)是否存在实数a,使f(x)的极大值为2?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一项比赛比赛分为:选答、抢答两个环节,在“选答”环节中,每位选手都可以从8道题目(其中5道选择题、3道填空题)中任意选4道题目作答:第二环节“抢答”中,一共为参赛选手准备了5道抢答题全部供选手抢答,在每一道题目的抢答中,每位选手抢到的概率都是
1
3
:现有甲、乙、丙三位选手参加比赛,试求:
(1)乙选手在选答环节中至少选到一个填空题的概率是多少?
(2)在抢答中,甲选手抢到的题目多于乙选手而不多于丙选手的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲船正在大海上航行.当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达.(供参考使用:tan41°=
3
2
).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,譬如北偏东…度).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的离心率e=
2
2
,长轴的左右端点分别为A1(-
2
,0),A2
2
,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l:y=kx+b与曲线C有且只有一个公共点P,且与直线x=2相交于点Q.求证:以PQ为直径的圆过定点N(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对任意的n∈N*,an与2的等差中项等于Sn与2的等比中项.
(1)求数列{an}的通项公式;
(2)设A={a1,a2,…,an,…},bn=2×3n-1,数列{bn}的前n项和为Tn
①求证:对任意的n∈N*,都有bn∈A;
②设数列{bn}的第n项是数列{an}中第r项,求
lim
n→∞
r
Tn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项,
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=n+an(n∈N*)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表根据表中数据,你认为成绩及格与班级有关?
  不及格 及格 总计
甲班 10 35 45
乙班 7 38 45
总计 17 73 90
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有
 
个.

查看答案和解析>>

同步练习册答案