精英家教网 > 高中数学 > 题目详情
已知椭圆C的离心率e=
2
2
,长轴的左右端点分别为A1(-
2
,0),A2
2
,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l:y=kx+b与曲线C有且只有一个公共点P,且与直线x=2相交于点Q.求证:以PQ为直径的圆过定点N(1,0).
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据离心率e=
2
2
,长轴的左右端点分别为A1(-
2
,0),A2
2
,0),求出几何量,即可求椭圆C的方程;
(Ⅱ)直线l:y=kx+b与曲线C联立,消去y,利用曲线C与直线l只有一个公共点,得△=0,可得b2=2k2+1,求出P,Q的坐标,证明
PN
QN
=1+
2k
b
-
2k
b
-1=0
,可得以PQ为直径的圆恒过定点.
解答: 解:(Ⅰ)由已知a=
2
e=
c
a
=
2
2

∴c=1,b=
a2-c2
=1

∴椭圆C的方程为
x2
2
+y2=1

(Ⅱ)
y=kx+b
x2
2
+y2=1
消去得(2k2+1)x2+4kbx+2b2-2=0,
∵曲线C与直线l只有一个公共点,∴△=0,
可得b2=2k2+1(*),
设P(xP,yP),
xP=
-4kb
2(2k2+1)
=-
2k
b
yP=kxP+b=
1
b
,∴P(-
2k
b
1
b
)

又由
y=kx+b
x=2
,∴Q(2,2k+b),
∵N(1,0),∴
PN
=(1+
2k
b
,-
1
b
)
NQ
=(1,2k+b)

PN
QN
=1+
2k
b
-
2k
b
-1=0
,∴PN⊥QN,
∴以PQ为直径的圆过定点N(1,0).
点评:本题主要考查椭圆方程、圆的性质、直线与圆锥曲线的位置关系,考查运算能力,考查化归思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

工厂生产某种电子元件,假设生产一件正品,可获利200元;生产一件次品,则损失100元.已知该厂制造电子元件的过程中,次品率P与日产量x的函数关系是P=
3x
4x+32
(x∈N*
(1)将该产品的日盈利额T(元)表示为日产量x(件)的函数;
(2)为获得最大利润,该厂的日产量应定为多少件?并求出最大的利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=|x-1|-|x+2|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x2-2x-a>0在x∈(1,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2(x-
π
4
)-sin2(x-
π
4
)-
2
sin(x-
π
4
)cosx.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)锐角三角形ABC的三内角分别为角A、B、C且f(
A
2
-
π
8
)=
2+
6
4
,求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北15°的方向上,行驶5km后到达B处,测得此山顶在西偏北25°的方向上,仰角为8°,求高CD(精确到1m)

参考数据:sin15°=0.259,sin8°=0.139,sin10°=0.174,sin25°=0.423,tan15°=0.268,tan8°=0.141,tan10°=0.176,tan25°=0.466.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα-cosα=
1
3
,则sin2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且S1=1,S3=6,则
n
Sn+8
的最大值为
 

查看答案和解析>>

同步练习册答案