精英家教网 > 高中数学 > 题目详情
等差数列{an}的前n项和为Sn.已知a1=10,a2为整数,且Sn≤S4
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:等差数列与等比数列
分析:(Ⅰ)由题意得a4≥0,a5≤0,即10+3d≥0,10+4d≤0,解得d=-3,即可写出通项公式;
(Ⅱ)利用裂项相消法求数列和即可.
解答: 解:(Ⅰ)由a1=10,a2为整数,且Sn≤S4得s3≤s4,s5≤s4,即s4-s3≥0,s5-s4≤0,
∴a4≥0,a5≤0,即10+3d≥0,10+4d≤0,解得-
10
3
≤d≤-
5
2

∴d=-3,
∴{an}的通项公式为an=13-3n.
(Ⅱ)∵bn=
1
(13-3n)(10-3n)
=
1
3
1
10-3n
-
1
13-3n
),
∴Tn=b1+b2+…+bn=
1
3
1
7
-
1
10
+
1
4
-
1
7
+…+
1
10-3n
-
1
13-3n
)=
1
3
1
10-3n
-
1
10
)=
n
10(10-3n)
点评:本题主要考查数列通项公式及数列和的求法,考查学生对裂项相消求和的能力及运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知底面边长为1,侧棱长为
2
的正四棱柱的各顶点均在同一球面上,则该球的体积为(  )
A、
32π
3
B、4π
C、2π
D、
4
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.
(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:
①顾客所获的奖励额为60元的概率;
②顾客所获的奖励额的分布列及数学期望;
(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=
π
3
,AB=8,点D在边BC上,且CD=2,cos∠ADC=
1
7

(1)求sin∠BAD;
(2)求BD,AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品不喜欢甜品合计
南方学生602080
北方学生101020
合计7030100
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2
   
P(x2>k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=
7
,EA=2,∠ADC=
3
,∠BEC=
π
3

(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;
(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X40<X<8080≤X≤120X>120
发电机最多可运行台数123
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(x+φ)-2sinφcosx的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为单位向量,其夹角为60°,则(2
a
-
b
)•
b
=(  )
A、-1B、0C、1D、2

查看答案和解析>>

同步练习册答案