精英家教网 > 高中数学 > 题目详情
15.设a为正实数,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+$\frac{a}{x}$+7,若f(x)≥1-a对一切x>0成立,则a的取值范围为[4,+∞).

分析 设x>0则-x<0,利用条件和奇函数的性质求出x>0时的解析式,再由基本不等式求出此时f(x)的最小值,根据恒成立列出不等式,求出a的取值范围.

解答 解:设x>0,则-x<0,
∵当x<0时,f(x)=x+$\frac{a}{x}$+7,
∴f(-x)=-x-$\frac{a}{x}$+7,
∵y=f(x)是定义在R上的奇函数,
∴f(x)=-f(-x)=x+$\frac{a}{x}$-7,
又a是正实数,则x+$\frac{a}{x}$≥$2\sqrt{a}$,当且仅当x=$\frac{a}{x}$时取等号,
∴f(x)=x+$\frac{a}{x}$-7≥$2\sqrt{a}$-7,
∵f(x)≥1-a对一切x>0成立,
∴$2\sqrt{a}$-7≥1-a,即a+$2\sqrt{a}$-8≥0,
解得$\sqrt{a}≥2$或$\sqrt{a}≤-4$(舍去),即a≥4,
∴a的取值范围为[4,+∞),
故答案为:[4,+∞).

点评 本题考查奇函数的性质,以及基本不等式求最值的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A、B两点,|AB|=6,P为C的准线上一点,则△ABP的面积为(  )
A.3B.6C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若△ABC的三内角A、B、C对应的边分别是a、b、c,若a2+c2-b2=ac,则B=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足x2+y2=3,则$\frac{y}{{x-2\sqrt{3}}}$的取值范围为[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设M是圆(x-5)2+(y-3)2=4上的一点,则M到直线4x+3y-4=0的最小距离是(  )
A.7B.5C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线l过点P(1,1),倾斜角α=$\frac{π}{6}$,
(1)求直线l的参数方程;
(2)若直线l与曲线:$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数)相交于A,B两点,求|AB|及|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:吨)的影响,对近8年的年宣传费x1和年销售量yi(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:w1=$\sqrt{{x}_{1}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)根据(Ⅱ)中的回归方程,求当年宣传费x=36千元时,年销售预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehat{β}$=$\frac{\sum_{i=1}^{8}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{8}({u}_{1}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在极坐标系中,ρ=4sinθ是圆的极坐标方程,则点A(4,$\frac{π}{6}$)到圆心C的距离是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则k的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]

查看答案和解析>>

同步练习册答案