分析 根据定积分求出a的值,再利用二项式展开式的通项公式求出常数项的值.
解答 解:若$\int_1^e{\frac{2}{x}dx=a}$,
则2lnx${|}_{1}^{e}$=2(lne-ln1)=2,即a=2,
∴${(x-\frac{2}{x})}^{6}$展开式的通项公式为:
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{2}{x})}^{r}$=(-2)r•${C}_{6}^{r}$•x6-2r,
令6-2r=0,解得r=3;
∴展开式的常数项为:
T4=(-2)3•${C}_{6}^{3}$=-160.
故答案为:-160.
点评 本题考查了二项式展开式的通项公式与定积分的计算问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{5π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com