精英家教网 > 高中数学 > 题目详情
13.如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)求证:DE•BC=DM•AC+DM•AB.

分析 (Ⅰ)连接BE,OE,由已知得∠ABC=90°=∠AEB,∠A=∠A,从而△AEB∽△ABC,进而∠ABE=∠C,进而∠BEO+∠DEB=∠DCE+∠CBE=90°,由此能证明DE是圆O的切线.
(Ⅱ)DM=OD-OM=$\frac{1}{2}$(AC-AB),从而DM•AC+DM•AB=$\frac{1}{2}$(AC-AB)•(AC+AB)=$\frac{1}{2}$BC2,由此能证明DE•BC=DM•AC+DM•AB.

解答 证明:(Ⅰ)连接BE,OE,
∵AB是直径,∴∠AEB=90°,
∵∠ABC=90°=∠AEB,∠A=∠A,∴△AEB∽△ABC,
∴∠ABE=∠C,
∵BE⊥AC,D为BC的中点,∴DE=BD=DC,
∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,
∴∠BEO+∠DEB=∠DCE+∠CBE=90°,
∴∠OED=90°,∴DE是圆O的切线.
(Ⅱ)证明:∵O、D分别为AB、BC的中点,
∴DM=OD-OM=$\frac{1}{2}$(AC-AB),
∴DM•AC+DM•AB
=DM•(AC+AB)
=$\frac{1}{2}$(AC-AB)•(AC+AB)
=$\frac{1}{2}$(AC2-AB2
=$\frac{1}{2}$BC2
=DE•BC.
∴DE•BC=DM•AC+DM•AB.

点评 本题考查DE是圆O的切线的证明,考查DE•BC=DM•AC+DM•AB的证明,是中档题,解题时要认真审题,注意弦切角定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知(x-2)2+(y-4)2=2.
(1)求m=x+y的取值范围;
(2)求n=$\frac{y-2}{x}$的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳八中高三上学期月考二数学(理)试卷(解析版) 题型:解答题

公园里有一扇形湖面,管理部门打算在湖中建一三角形观景平台,希望面积与周长都最大.如图所示扇形,圆心角的大小等于,半径为百米,在半径上取一点,过点作平行于的直线交弧于点.设

(1)求△面积的函数表达式.

(2)求的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+3.
(I)解不等式:|g(x)|<5;
(II)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的通项an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n项和为Sn,则S29为(  )
A.-430B.-470C.470D.490

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个圆锥的底面半径是4,侧面展开图为四分之一圆面,一小虫从圆锥底面圆周上一点出发绕圆锥表面一周回到原处,其最小距离为$16\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.观察下面的几何体,哪些是棱柱(  )
A.①③⑤B.①⑥C.①③⑥D.③④⑥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法正确的是④(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②$y=\sqrt{x-3}+\sqrt{2-x}$是函数解析式;
③$y=\frac{{\sqrt{1-{x^2}}}}{3-|3-x|}$是非奇非偶函数;
④设二次函数f(x)=ax2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)=c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanθ=3,则$\frac{2sinθ+cosθ}{sinθ-4cosθ}$=-7.

查看答案和解析>>

同步练习册答案