精英家教网 > 高中数学 > 题目详情
5.已知$\frac{{a}_{n}}{{a}_{n-1}}$=f(n)(n≥2).
(1)若a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$(n≥2),求an
(2)若a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=2n,求an

分析 (1)直接利用已知结合累积法求数列的通项公式;
(2)利用累积法结合等差数列的前n项和求得数列通项公式.

解答 解:(1)由$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$(n≥2),得
${a}_{n}=\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=$\frac{n}{n+1}•\frac{n-1}{n}…\frac{2}{3}•1$=$\frac{2}{n+1}$(n≥2).
由a1=1适合上式.
∴${a}_{n}=\frac{2}{n+1}$;
(2)由$\frac{{a}_{n}}{{a}_{n-1}}$=2n(n≥2),得
${a}_{n}=\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}…\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=2n•2n-1…22=22+3+…+n=${2}^{\frac{(n-1)(n+2)}{2}}$(n≥2).
由a1=1适合上式.
∴${a}_{n}={2}^{\frac{(n-1)(n+2)}{2}}$.

点评 本题考查了数列递推式,考查了累积法求数列的通项公式,考查了等差数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.我国对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米)空气质量等级
m<35一级
35≤m≤75二级
m>75超标
某市环保局从2014年的PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)从这10天的数据中任取3天的数据,记ξ表示这3天中空气质量达到一级的天数,求ξ的分布列及数学期望;
(2)设这一年的360天中空气质量达到一级的天数为η,以这10天的PM2.5日均值来估计η取何值时的概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A,B,C三种产品共15吨(同一时间段内只能生产一种产品),已知生产这些产品每吨所需天数和每吨产值如表:
产品名称ABC
$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{4}$
产值(单位:万元)4$\frac{7}{2}$2
则每周最高产值是(  )
A.30B.40C.47.5D.52.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若2x+5y≤2-y+5-x,则有x+y≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=rcosα\\ y=rsinα\end{array}\right.$(α为参数,r为常数,r>0).以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$\sqrt{2}ρcos(θ+\frac{π}{4})+2=0$.若直线l与曲线C交于A,B两点,且$AB=2\sqrt{2}$,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax2+(a-e+1)x-1,(e=2.71828…是自然对数的底数,a为常数).
(Ⅰ) 当a=0时,求f(x)的单调区间;
(Ⅱ)若函数g(x)=f(x)-$\frac{1}{2}$x•f′(x)在区间[1,+∞)上单调递减,求a的范围
(Ⅲ)当a∈(e-2,1)时,函数f(x)=ex-ax2+(a-e+1)x-1在区间(0,1)上是否有零点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)的图象经过坐标原点,且f(x)=x2-x+b,数列{an}的前n项和Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式;
(2)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论;
(3)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设P、Q分别是圆(x-1)2+y2=$\frac{1}{4}$和椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,则P、Q两点间的最小距离是$\frac{\sqrt{6}}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数(m2-m)+mi为纯虚数,则实数m的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案