15£®ÎÒ¹ú¶ÔPM2.5²ÉÓÃÈçϱê×¼£º
PM2.5ÈÕ¾ùÖµm£¨Î¢¿Ë/Á¢·½Ã×£©¿ÕÆøÖÊÁ¿µÈ¼¶
m£¼35Ò»¼¶
35¡Üm¡Ü75¶þ¼¶
m£¾75³¬±ê
ijÊл·±£¾Ö´Ó2014ÄêµÄPM2.5¼à²âÊý¾ÝÖУ¬Ëæ»ú³éÈ¡10ÌìµÄÊý¾Ý×÷ΪÑù±¾£¬¼à²âÖµÈ羥ҶͼËùʾ£¨Ê®Î»Îª¾¥£¬¸öλΪҶ£©£®
£¨1£©´ÓÕâ10ÌìµÄÊý¾ÝÖÐÈÎÈ¡3ÌìµÄÊý¾Ý£¬¼Ç¦Î±íʾÕâ3ÌìÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£»
£¨2£©ÉèÕâÒ»ÄêµÄ360ÌìÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ¦Ç£¬ÒÔÕâ10ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æ¦ÇÈ¡ºÎֵʱµÄ¸ÅÂÊ×î´ó£®

·ÖÎö £¨1£©È·¶¨Ëæ»ú±äÁ¿k=0£¬1£¬2£¬3£¬ÀûÓÃP£¨¦Î=k£©=$\frac{{{C}_{4}^{k}C}_{6}^{3-k}}{{C}_{10}^{3}}$Çó½â¸ÅÂʵóö·Ö²¼ÁУ®
£¨2£©Ò»¼¶µÄ¸ÅÂÊΪ$\frac{2}{5}$£¬¶þ¼¶»òÈý¼¶µÄ¸ÅÂÊΪ$\frac{3}{5}$£¬ÅжÏΪ¶þÏî·Ö²¼£¬ÔËÓøÅÂʹ«Ê½µÃ³öP£¨¦Ç=k£©=${C}_{10}^{k}$£¨$\frac{2}{5}$£©k¡Á£¨$\frac{3}{5}$£©10-k£¬
½èÖú²»µÈʽ×éµÃ³ö¼´$\left\{\begin{array}{l}{{2C}_{10}^{k}¡Ý{3C}_{10}^{k-1}}\\{{3C}_{10}^{k}¡Ý{2C}_{10}^{k+1}}\end{array}\right.$£¬ÀûÓÃÅÅÁÐ×éºÏÇó½â¼´¿ÉµÃ³ök=4ʱ¸ÅÂÊ×î´ó£¬
ÔËÓÃÑù±¾¹À¼Æ×ÜÌå¼´¿ÉµÃ³öÕâÒ»ÄêµÄ360ÌìÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ360¡Á$\frac{4}{10}$=144£®

½â´ð ½â£º£¨1£©ÓÉ N=10£¬M=4£¬n=3£¬¦ÎµÄ¿ÉÄÜֵΪ0£¬1£¬2£¬3
ÀûÓÃP£¨¦Î=k£©=$\frac{{{C}_{4}^{k}C}_{6}^{3-k}}{{C}_{10}^{3}}$£¨k=0£¬1£¬2£¬3£©¼´µÃ·Ö²¼ÁУº

¦Î0123
P$\frac{1}{6}$$\frac{1}{2}$$\frac{3}{10}$$\frac{1}{30}$
ÊýѧÆÚÍûE£¨¦Î£©=0¡Á$\frac{1}{6}$$+1¡Á\frac{1}{2}$$+2¡Á\frac{3}{10}$$+3¡Á\frac{1}{30}$=$\frac{6}{5}$£»»òÔËÓÃE£¨¦Î£©=3¡Á$\frac{2}{5}$=$\frac{6}{5}$
£¨2£©Ò»¼¶µÄ¸ÅÂÊΪ$\frac{2}{5}$£¬¶þ¼¶»òÈý¼¶µÄ¸ÅÂÊΪ$\frac{3}{5}$
P£¨¦Ç=k£©=${C}_{10}^{k}$£¨$\frac{2}{5}$£©k¡Á£¨$\frac{3}{5}$£©10-k£¬
¸ù¾Ý$\left\{\begin{array}{l}{P£¨k£©¡ÝP£¨k-1£©}\\{P£¨k£©¡ÝP£¨k+1£©}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{2C}_{10}^{k}¡Ý{3C}_{10}^{k-1}}\\{{3C}_{10}^{k}¡Ý{2C}_{10}^{k+1}}\end{array}\right.$
$\frac{17}{5}$¡Ük$¡Ü\frac{22}{5}$£¬
¡àk=4ʱ¸ÅÂÊ×î´ó£¬
¡à10ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æ¦ÇÈ¡4£¬
¹À¼Æ×ÜÌ壺ÕâÒ»ÄêµÄ360ÌìÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ360¡Á$\frac{4}{10}$=144£®

µãÆÀ ±¾Ì⿼²éÖÐλÊýµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨺ÍÓ¦Ó㬽âÌâʱҪעÒ⾥ҶͼµÄºÏÀíÔËÓ㬳ä·ÖÀûÓÃÑù±¾¹À¼Æ×ÜÌå½â¾ö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³°à¹²ÓÐѧÉú54ÈË£¬ÆäÖÐÄÐÉú30ÈË£¬ÎªÁ˵÷²é¸Ã°àѧÉú¶Ô¹úѧµÄÐËȤÇé¿ö£¬ÏÖ°´ÐÔ±ð²ÉÓ÷ֲã³éÑùµÄ·½·¨³éȡһ¸öÈÝÁ¿Îª18µÄÑù±¾£¬ÔòÑù±¾ÖÐÅ®ÉúµÄÈËÊýΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2£¬g£¨x£©=lnax£¨a£¾0£©
£¨1£©Èô²»µÈʽÈô²»µÈʽf£¨x£©£¼g£¨x£©½â¼¯Îª¿Õ¼¯£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©ÇóÖ¤£¬$\frac{2^2-1}{ln2}$+$\frac{3^2-1}{ln3}$+¡­+$\frac{n^2-1}{lnn}$£¾2£¨n-1£©£®£¨n¡Ý2£¬n¡ÊN£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÀëÐÄÂÊe=$\frac{\sqrt{5}}{2}$µÄË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾0£¬b£¾0£©$ÓÒ½¹µãΪF£¬OÎª×ø±êÔ­µã£¬ÒÔOFΪֱ¾¶Ô²ÓëË«ÇúÏßCµÄÒ»Ìõ½¥½üÏßÏཻÓÚO£¬AÁ½µã£¬Èô¡÷AOFµÄÃæ»ýΪ4£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬¾­¹ý´åׯAÓÐÁ½Ìõ¼Ð½Ç60¡ãΪµÄ¹«Â·AB£¬AC£¬¸ù¾Ý¹æ»®ÄâÔÚÁ½Ìõ¹«Â·Ö®¼äµÄÇøÓòÄÚ½¨Ò»¹¤³§P£¬·Ö±ðÔÚÁ½Ìõ¹«Â·±ßÉϽ¨Á½¸ö²Ö¿âM£¬N£¨ÒìÓÚ´åׯA£©£¬ÒªÇóPM=PN=MN=2£¨µ¥Î»£ºÇ§Ã×£©£®¼Ç¡ÏAMN=¦È£®
£¨1£©½«AN£¬AMÓú¬¦ÈµÄ¹ØÏµÊ½±íʾ³öÀ´£»
£¨2£©ÈçºÎÉè¼Æ£¨¼´AN£¬AMΪ¶à³¤Ê±£©£¬Ê¹µÃ¹¤³§²úÉúµÄÔëÉù¶Ô¾ÓÃñµÄÓ°Ïì×îС£¨¼´¹¤³§Óë´åׯµÄ¾àÀëAP×î´ó£©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®7¸öÈ˵½7¸öµØ·½È¥ÂÃÓΣ¬Ò»ÈËÒ»¸öµØ·½£¬¼×²»È¥AµØ£¬ÒÒ²»È¥BµØ£¬±û²»È¥CµØ£¬¶¡²»È¥DµØ£¬¹²ÓжàÉÙÖÖÂÃÓη½°¸£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÊýÁÐ{an}µÄÊ×ÏîΪa1=a£¬SnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒÂú×ãS${\;}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$£¬a1¡Ù0£¬n¡Ý2£®ÈôÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ä³µ¥Î»°²Åżס¢ÒÒ¡¢±ûÈýÈËÔÚijÔÂ1ÈÕÖÁ12ÈÕÖµ°à£¬Ã¿ÈË4Ì죮
¼×˵£ºÎÒÔÚ1ÈÕºÍ3ÈÕ¶¼ÓÐÖµ°à£»
ÒÒ˵£ºÎÒÔÚ8ÈÕºÍ9ÈÕ¶¼ÓÐÖµ°à£»
±û˵£ºÎÒÃÇÈýÈ˸÷×ÔÖµ°àµÄÈÕÆÚÖ®ºÍÏàµÈ£®¾Ý´Ë¿ÉÅжϱû±Ø¶¨Öµ°àµÄÈÕÆÚÊÇ£¨¡¡¡¡£©
A£®2ÈÕºÍ5ÈÕB£®5ÈÕºÍ6ÈÕC£®6ÈÕºÍ11ÈÕD£®2ÈÕºÍ11ÈÕ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª$\frac{{a}_{n}}{{a}_{n-1}}$=f£¨n£©£¨n¡Ý2£©£®
£¨1£©Èôa1=1£¬$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$£¨n¡Ý2£©£¬Çóan£»
£¨2£©Èôa1=1£¬$\frac{{a}_{n}}{{a}_{n-1}}$=2n£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸