精英家教网 > 高中数学 > 题目详情
7.已知数列{an}的首项为a1=a,Sn是数列{an}的前n项和,且满足S${\;}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,a1≠0,n≥2.若数列{an}为等差数列,求a的值.

分析 分别令n=2,n=3,及a1=a,结合已知可由a表示a2,a3,结合等差数列的性质可求a,

解答 解:在S${\;}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,中分别令n=2,n=3,及a1=a,
得(a+a22=12a2+a2,(a+a2+a32=27a3+(a+a22
因为an≠0,所以a2=12-2a,a3=3+2a.
因为数列{an}是等差数列,所以a1+a3=2a2
即2(12-2a)=a+3+2a,解得a=3.
经检验a=3时,an=3n,Sn=$\frac{3n(n+1)}{2}$,Sn-1=$\frac{3n(n-1)}{2}$,
满足S${\;}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$.

点评 本题主要考查了等差数列的性质的应用,数列的前n项和公式的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知(a+i)(1-bi)=2i(其中a,b均为实数,i为虚数单位),则|a+bi|等于(  )
A.2B.$\sqrt{2}$C.1D.1或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知三次函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2-6x+1(x∈R),a,b为实数.
(1)若a=3,b=3时,求函数f(x)的极大值和极小值;
(2)设函数g(x)=f′(x)+7有唯一零点,若b∈[1,3],求g(1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.我国对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米)空气质量等级
m<35一级
35≤m≤75二级
m>75超标
某市环保局从2014年的PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)从这10天的数据中任取3天的数据,记ξ表示这3天中空气质量达到一级的天数,求ξ的分布列及数学期望;
(2)设这一年的360天中空气质量达到一级的天数为η,以这10天的PM2.5日均值来估计η取何值时的概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解下列不等式:
(1)x4-x2-6≥0;
(2)($\frac{1}{3}$)2x2-3x-9≤($\frac{1}{3}$)x 2+3x-17
(3)$\frac{x-1}{1-2x}$≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,△PAD为正三角形,且E、F分别为AD、AB的中点,BE⊥平面PAD.
(1)求证:BC⊥平面PEB;
(2)求EF与平面PDC所成角的正弦值.
(3)求平面PEB与平面PDC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足4x-y2=0,则$\frac{y}{x+1}$的取值范围为-1≤t≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某生产厂家根据市场调查分析,决定调整产品生产方案,准备每周(按5天计算)生产A,B,C三种产品共15吨(同一时间段内只能生产一种产品),已知生产这些产品每吨所需天数和每吨产值如表:
产品名称ABC
$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{4}$
产值(单位:万元)4$\frac{7}{2}$2
则每周最高产值是(  )
A.30B.40C.47.5D.52.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=f(x)的图象经过坐标原点,且f(x)=x2-x+b,数列{an}的前n项和Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式;
(2)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论;
(3)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案