精英家教网 > 高中数学 > 题目详情
19.已知f(x)=x2+2x-4+$\frac{a}{x}$.
(1)若a=4,求f(x)的单调区间.
(2)若f(x)有三个零点,求a的取值范围.

分析 (1)先求出导函数,再根据导数和函数的单调性的关系即可求出单调性区间,
(2)已知条件转化为函数有两个极值点,并且极小值小于0,极大值大于0,求解即可.

解答 解:(1)当a=4时,f(x)=x2+2x-4+$\frac{4}{x}$,x≠0,
∴f′(x)=2x+2-$\frac{4}{{x}^{2}}$=$\frac{2({x}^{3}+{x}^{2}-2)}{{x}^{2}}$=$\frac{2(x-1)({x}^{2}+2x+2)}{{x}^{2}}$,
令f′(x)>0,解得x>1,函数单调递增,
当f′(x)<0,解得x<1且x≠0,函数单调递减,
∴f(x)在(1,+∞)单调递增,在(-∞,0)或(0,1)上单调递减;
(2)f(x)有三个零点,即f(x)=x2+2x-4+$\frac{a}{x}$=0有3个解,
即x3+2x2-4x+a=0,有3个非0的解,
设g(x)=x3+2x2-4x+a=0,x≠0,
则函数g(x)有两个极值点,极小值小于0,极大值大于0;
由g′(x)=3x2+4x-4=(3x-2)(x+2)=0,解得x1=-2,x2=$\frac{2}{3}$,
∴x∈(-∞,-2)或($\frac{2}{3}$,+∞),g′(x)>0,
x∈(-2,0)或(0,$\frac{2}{3}$),g′(x)<0,
∴函数的极小值g($\frac{2}{3}$)=a-$\frac{40}{27}$和极大值f(-2)=a+8.
∵函数g(x)=x3+2x2-4x+a有三个不同的零点,
∴$\left\{\begin{array}{l}{a+8>0}\\{a-\frac{40}{27}<0}\end{array}\right.$,解之,得-8<a<$\frac{40}{27}$.
而当a=0时,g(x)=x3+2x2-4x=x(x2+2x-4)=0,只有2个零点,
故实数a的取值范围是(-8,0)∪(0,$\frac{40}{27}$).

点评 本题考查函数的导数与函数的极值的关系,考查转化思想,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x+1)=2x-1,则f(x)的解析式为(  )
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)求f(x)的极值;
(2)当m=0时,若不等式f(x)≥$\frac{k}{x+1}$对x∈[1,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t为参数)
(1)将直线l与椭圆C的参数方程化为普通方程;
(2)求直线l与椭圆C相交的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某地区在对人们休闲方式的一次调查中,共调查了120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为“性别与休闲方式有关系”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某空间几何体的三视图(单位:cm)如图所示,则其表面积是12+4$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知二次函数f(x)=ax2+bx+1,若f(-1)=1且f(x)<2恒成立,则实数a的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x+$\frac{a}{x}$,g(x)=-xe-x,若对任意的x1∈[1,e],存在x2∈[0,2],使得f(x1)≥g(x2),则a的取值范围为$[-1-\frac{1}{e},+∞)$.

查看答案和解析>>

同步练习册答案