精英家教网 > 高中数学 > 题目详情
10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

分析 根据题目中的新定义,结合函数与方程的知识转化为$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$=2的根求解,从而确定正确的答案.

解答 解:根据题意得出函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)=$\frac{{a}^{2}+a}{{a}^{2}}$$-\frac{2}{{a}^{2}x}$是单调递增函数,
∴转化为$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$=2x有2个根的问题.
即2a2x2-(a2+a)x+2=0,
x1+x2=$\frac{{a}^{2}+a}{2{a}^{2}}$,xxx2=$\frac{1}{{a}^{2}}$,
|x1-x2|=$\sqrt{(\frac{{a}^{2}+a}{2{a}^{2}})^{2}-\frac{4}{{a}^{2}}}$═$\sqrt{\frac{{a}^{2}+2a-15}{4{a}^{2}}}$=$\sqrt{-\frac{15}{4}(\frac{1}{a})^{2}+\frac{1}{2}×\frac{1}{a}+\frac{1}{4}}$
根据二次函数得出$\frac{1}{a}$=$\frac{1}{15}$时取的最大值$\frac{2\sqrt{15}}{15}$
∵利用新定义判断n,m为方程的根
∴n-m的最大值为$\frac{2\sqrt{15}}{15}$
故答案为:$\frac{2\sqrt{15}}{15}$

点评 本题主要考查与函数有关的命题的真假判断,考查了在新定义下函数的定义域、值域问题以及解方程的问题,是易错题.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知△ABC的三个顶点A(0,5),B(1,2),C(-6,4),求BC边上的中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.点P在直径为AB=1的半圆上移动,过点P作圆的切线PT,且PT=1,∠PAB=α,问α为何值时,四边形ABTP的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,AB=2CB=2,∠ABC=60°,在梯形ACEF中,EF∥AC,且AC=2EF=2EC,EC⊥平面ABCD.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)求BF与平面ACEF所成的角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,点A(x1,y1)满足方程f(x,y)=0,点B(-1,-1).
(1)计算$|{\overrightarrow{AB}}$|; 
(2)O为坐标原点,当$\overrightarrow{AO}$⊥$\overrightarrow{BO}$时,计算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥O-ABCD中,底面ABCD是菱形,∠ABC=60°,OA=AB=2,OA⊥底面ABCD,M为OA的中点,N为BC的中点.作AP⊥CD于点P,分别以AB,AP,AO所在直线为x,y,z轴,建立如图空间直角坐标系.
(1)证明:直线MN∥平面OCD;  
(2)求异面直线AB与MD所成角的余弦值;
(3)求点B到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知b>0,曲线$\left\{{\begin{array}{l}{x=cosϕ+a}\\{y=sinϕ+b}\end{array}}$(φ为参数)与曲线ρ=4cosθ相交,则在平面直角坐标系内,直线x+$\sqrt{3}$y=0被点(a,b)所在平面区域截得的弦长为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x2+2x-4+$\frac{a}{x}$.
(1)若a=4,求f(x)的单调区间.
(2)若f(x)有三个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:x2=4y,点M(x0,y0)满足$x_0^2<4{y_0}$,则直线l:x-x0=t(y-y0),(t∈R)与抛物线C公共点的个数是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

同步练习册答案