精英家教网 > 高中数学 > 题目详情
15.如图,在四棱锥O-ABCD中,底面ABCD是菱形,∠ABC=60°,OA=AB=2,OA⊥底面ABCD,M为OA的中点,N为BC的中点.作AP⊥CD于点P,分别以AB,AP,AO所在直线为x,y,z轴,建立如图空间直角坐标系.
(1)证明:直线MN∥平面OCD;  
(2)求异面直线AB与MD所成角的余弦值;
(3)求点B到平面OCD的距离.

分析 (1)根据空间直角坐标系,写出对应点与向量的坐标,利用平面OCD的法向量证明MN∥平面OCD;
(2)利用向量的数量积求出AB与MD所成角的余弦值;
(3)利用向量$\overrightarrow{OB}$在法向量上的投影的绝对值求出点B到平面OCD的距离.

解答 解:(1)根据空间直角坐标系得,
A(0,0,0),B(2,0,0),$P(0{,^{\;}}\sqrt{3}{,^{\;}}0)$,$D(-1{,^{\;}}\sqrt{3}{,^{\;}}0)$,
O(0,0,2),M(0,0,1),$N(\frac{3}{2}{,^{\;}}\frac{{\sqrt{3}}}{2}{,^{\;}}0)$,…(2分)
∴$\overrightarrow{MN}=(\frac{3}{2}{,^{\;}}\frac{{\sqrt{3}}}{2}{,^{\;}}-1)$,
$\overrightarrow{OP}=(0{,^{\;}}\sqrt{3}{,^{\;}}-2)$,
$\overrightarrow{OD}=(-1{,^{\;}}\sqrt{3}{,^{\;}}-2)$,…(3分)
设平面OCD的法向量为$\overrightarrow n=(x{,^{\;}}y{,^{\;}}z)$,
则$\overrightarrow n•\overrightarrow{OP}=0$,$\overrightarrow n•\overrightarrow{OD}=0$,
即$\left\{\begin{array}{l}\sqrt{3}y-2z=0\\-x+\sqrt{3}y-2z=0\end{array}\right.$,
取$y=\sqrt{3}$,解得$\overrightarrow n=(0{,^{\;}}\sqrt{3}{,^{\;}}\frac{3}{2})$;…(4分)
$\overrightarrow{MN}$•$\overrightarrow{n}$=($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$,-1)•(0,$\sqrt{3}$,$\frac{3}{2}$)=0,
∴MN∥平面OCD;…(6分)
(2)设AB与MD所成的角为θ,
∵$\overrightarrow{AB}=(2{,^{\;}}0{,^{\;}}0)$,$\overrightarrow{MD}=(-1{,^{\;}}\sqrt{3}{,^{\;}}-1)$,…(7分)
∴$cosθ=\frac{{|\overrightarrow{AB}•\overrightarrow{MD|}}}{{|\overrightarrow{AB}|•|\overrightarrow{MD}|}}=\frac{2}{{2×\sqrt{5}}}=\frac{{\sqrt{5}}}{5}$,…(9分)
∴AB与MD所成角的余弦值为$\frac{{\sqrt{5}}}{5}$;…(10分)
(3)设点B到平面OCD的距离为d,则
d为向量$\overrightarrow{OB}$在向量$\overrightarrow n=(0{,^{\;}}\sqrt{3}{,^{\;}}\frac{3}{2})$上的投影的绝对值,
由$\overrightarrow{OB}=(2{,_{\;}}0{,^{\;}}-2)$,得
$d=\frac{{|\overrightarrow{OB}•\overrightarrow{n|}}}{{|\overrightarrow{n|}}}=\frac{3}{{\frac{{\sqrt{21}}}{2}}}=\frac{{2\sqrt{21}}}{7}$;…(12分)
所以点B到平面OCD的距离为$\frac{{2\sqrt{21}}}{7}$.…(14分)

点评 本题主要考查了空间中的平行和垂直关系的应用问题,也考查了建立空间坐标系,利用向量法求夹角和距离的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若an=2n-1+1(n∈N*),则33是数列{an}的第6项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k为常数)有四个零点,则这四个零点之和为(  )
A.-2kB.0C.2kD.4k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项均为正数的数列{an}的前n项和为Sn.数列{an}中的项按下列规律过程构成无穷多个行列式:|$\begin{array}{l}{a_1}{a_2}{a_3}\\{a_4}{a_5}{a_6}\\{a_7}{a_8}{a_9}\end{array}|,|\begin{array}{l}{a_7}{a_8}{a_9}\\{a_{10}}{a_{11}}{a_{12}}\\{a_{13}}{a_{14}}{a_{15}}\end{array}|,|\begin{array}{l}{a_{13}}{a_{14}}{a_{15}}\\{a_{16}}{a_{17}}{a_{18}}\\{a_{19}}{a_{20}}{a_{21}}\end{array}|…,记{A_i}为{a_i}$(i=1,2,3…)的代数余子式.
(1)若Sn=2n2+n,求A1,A4,A6,A9
(2)若数列{an}为等差数列,A3=-27$,\;{a_1}=5\;,\;{b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn
(3)数列{an}为公差不为0的等差数列,Ai=λ(Ai-k+Ai+k),其中i,i-k,i+k,k∈N*.试研究λ的所有可能值,并指出取到每个值时的条件(注:本小题将根据考生研究的情况分层评分).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P(x0,y0)(x0≠0)是抛物线x2=2y上的一动点,F为焦点,点M的坐标为(0,1).
(Ⅰ)求证:以MP为直径的圆截直线$y=\frac{1}{2}$所得的弦长为定值;
(Ⅱ)过点P作x轴的垂线交x轴于点A,过点P作该抛物线的切线l交x轴于点B.问:直线PB是否为∠APF的平分线?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1-m+lnx}{x}$,m∈R.
(1)求f(x)的极值;
(2)当m=0时,若不等式f(x)≥$\frac{k}{x+1}$对x∈[1,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某地区在对人们休闲方式的一次调查中,共调查了120人,其中女性70人,男性50人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)能否在犯错误的概率不超过0.025的前提下认为“性别与休闲方式有关系”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于曲线C所在的平面上的定点P,若存在以点P为顶点的角α,使得α≥∠APB对于曲线C上的任意两个不同的点A、B恒成立,则称角α为曲线C的“P点视角”,并称其中最小的“P点视角”为曲线C相对于点P的“P点确视角”.已知曲线C:x2+y2=2,相对于点P(2,0)的“P点确视角”的大小是$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案