精英家教网 > 高中数学 > 题目详情
1.点P在直径为AB=1的半圆上移动,过点P作圆的切线PT,且PT=1,∠PAB=α,问α为何值时,四边形ABTP的面积最大?

分析 由AB为圆的直径,利用圆周角定理得到∠APB为直角,再由AB=1,表示出PA与PB,根据PT与圆相切,表示出BC,进而表示出四边形ABTP的面积,整理后,利用正弦函数的值域确定出最大值即可.

解答 解:∵AB为直径,
∴∠APB=90°,AB=1,
∵∠PAB=α,
∴PA=cosα,PB=sinα,
又PT切圆于P点,∠TPB=∠PAB=α,
∴BC=sinα•PB=sin2α,
∴S四边形ABTP=S△PAB+S△TPB
=$\frac{1}{2}$PA•PB+$\frac{1}{2}$PT•BC
=$\frac{1}{2}$sinαcosα+$\frac{1}{2}$sin2α
=$\frac{1}{4}$sin2α+$\frac{1}{4}$(1-cos2α)
=$\frac{1}{4}$(sin2α-cos2α)+$\frac{1}{4}$
=$\frac{\sqrt{2}}{4}$sin(2α-$\frac{π}{4}$)+$\frac{1}{4}$,
∵0<α<$\frac{π}{2}$,-$\frac{π}{4}$<2α-$\frac{π}{4}$<$\frac{3}{4}$π,
∴当2α-$\frac{π}{4}$=$\frac{π}{2}$,即α=$\frac{3}{8}$π时,S四边形ABTP最大.

点评 此题考查了圆周角定理,正弦函数的值域,三角函数的恒等变换在解三角形中的应用,熟练掌握三角函数的恒等变换是解本题的关键,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知F为抛物线C:y2=5x的焦点,点A(3,1),M是抛物线C上的动点,当|MA|+|MF|取最小值$\frac{17}{4}$时,
点M的坐标为($\frac{1}{5}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.同时满足下列两个性质的函数f(x)称为“H函数”:
①函数f(x)在定义域上是单调函数;
②函数f(x)在定义域内存在区间[a,b],使得f(x)在[a,b]的值域也为[a,b].
(1)判断函数y=x3是否为“H函数”,若不是,请说明理由;若是,求满足条件②的区间[a,b]中端点a,b的值
(2)若函数y=lgx-t是“H函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x+1)=2x-1,则f(x)的解析式为(  )
A.f(x)=3-2xB.f(x)=2x-3C.f(x)=3x-2D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.棱长为2的正方体的顶点都在同一个球面上,则球的表面积是(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=|x+$\frac{1}{x}|-|x-\frac{1}{x}$|-k(k为常数)有四个零点,则这四个零点之和为(  )
A.-2kB.0C.2kD.4k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系.曲线C的极坐标方程是ρ=4cosθ(0$≤θ≤\frac{π}{2}$),直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求直线l的直角坐标方程和曲线C的参数方程;
(2)求曲线C上的动点M到直线l的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某空间几何体的三视图(单位:cm)如图所示,则其表面积是12+4$\sqrt{3}$cm2

查看答案和解析>>

同步练习册答案