精英家教网 > 高中数学 > 题目详情
20.已知抛物线C:x2=4y,点M(x0,y0)满足$x_0^2<4{y_0}$,则直线l:x-x0=t(y-y0),(t∈R)与抛物线C公共点的个数是(  )
A.0B.1C.2D.1或2

分析 由题意,点M(x0,y0)满足$x_0^2<4{y_0}$,M在抛物线的内部,即可得出结论.

解答 解:由题意,点M(x0,y0)满足$x_0^2<4{y_0}$,M在抛物线的内部,
∵直线l:x-x0=t(y-y0),(t∈R),
∴直线l:x-x0=t(y-y0),(t∈R)与抛物线C公共点的个数是1或2.

点评 本题考查直线与抛物线、点与抛物线的位置关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称区间[m,n]为函数f(x)的k倍区间.若区间[m,n]为函数f(x)=$\frac{({a}^{2}+a)x-2}{{a}^{2}x}$(a≠0)的2倍区间,则n-m的最大值为$\frac{2\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某空间几何体的三视图(单位:cm)如图所示,则其表面积是12+4$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知二次函数f(x)=ax2+bx+1,若f(-1)=1且f(x)<2恒成立,则实数a的取值范围是(-4,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.四棱柱ABCD-A1B1C1D1的三视图如图所示,则异面直线D1C与AC1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于曲线C所在的平面上的定点P,若存在以点P为顶点的角α,使得α≥∠APB对于曲线C上的任意两个不同的点A、B恒成立,则称角α为曲线C的“P点视角”,并称其中最小的“P点视角”为曲线C相对于点P的“P点确视角”.已知曲线C:x2+y2=2,相对于点P(2,0)的“P点确视角”的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{1}{3}{x}^{3}$-x2+m在[-1,1]上的最大值为$\frac{2}{3}$.
(1)求实数m的值;
(2)求函数f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x+$\frac{a}{x}$,g(x)=-xe-x,若对任意的x1∈[1,e],存在x2∈[0,2],使得f(x1)≥g(x2),则a的取值范围为$[-1-\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:BD⊥平面AED;
(2)若△EAD中,AE=ED,∠EAD=45°,求二面角F-BD-E的余弦值.

查看答案和解析>>

同步练习册答案