17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£®ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ=4cos¦È£®Ö±ÏßlÓëÇúÏßC1ÏàÇУ®
£¨1£©½«ÇúÏßC1µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó¦ÁµÄÖµ£®
£¨2£©ÒÑÖªµãQ£¨2£¬0£©£¬Ö±ÏßlÓëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1½»ÓÚA£¬BÁ½µã£¬Çó¡÷ABQµÄÃæ»ý£®

·ÖÎö £¨1£©ÇúÏßC1£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬°Ñ¦Ñ2=x2+y2£¬x=¦Ñcos¦È´úÈë¿ÉµÃCµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓÃÖ±ÏßlÓëÇúÏßC1ÏàÇÐÇó¦ÁµÄÖµ£®
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬´úÈëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1£¬ÕûÀí¿ÉµÃ10x2+4x-5=0£¬Çó³ö|AB|£¬Qµ½Ö±ÏߵľàÀ룬¼´¿ÉÇó¡÷ABQµÄÃæ»ý£®

½â´ð ½â£º£¨1£©ÇúÏßC1£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+y2=4x£¬Å䷽ΪC1£º£¨x-2£©2+y2=4£¬¿ÉµÃÔ²ÐÄ£¨2£¬0£©£¬°ë¾¶r=2
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£¬ÆÕͨ·½³ÌΪy-$\sqrt{3}$=k£¨x-1£©£¬k=tan¦Á£¬0¡Ü¦Á£¼¦Ð£¬
¡ßÖ±ÏßlÓëÇúÏßC1ÏàÇУ¬¡à$\frac{|k+\sqrt{3}|}{\sqrt{{k}^{2}+1}}$=2£¬¡àk=$\frac{\sqrt{3}}{3}$£¬¡à¦Á=$\frac{¦Ð}{6}$£»
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬´úÈëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1£¬ÕûÀí¿ÉµÃ10x2+4x-5=0£¬
¡à|AB|=$\sqrt{1+\frac{1}{3}}•\sqrt{£¨-\frac{2}{5}£©^{2}-4¡Á£¨-\frac{1}{2}£©}$=$\frac{6\sqrt{2}}{5}$£¬
Qµ½Ö±ÏߵľàÀëd=$\frac{\frac{4\sqrt{3}}{3}}{\sqrt{\frac{1}{3}+1}}$=2£¬
¡à¡÷ABQµÄÃæ»ýS=$\frac{1}{2}¡Á\frac{6\sqrt{2}}{5}¡Á2$=$\frac{6\sqrt{2}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÆäÖÐb¡Ùc£¬
ÇÒbcosB=ccosC£¬ÑÓ³¤Ïß¶ÎBCµ½µãD£¬Ê¹µÃBC=4CD=4£¬¡ÏCAD=30¡ã£¬
£¨¢ñ£©ÇóÖ¤£º¡ÏBACÊÇÖ±½Ç£»
£¨¢ò£©Çótan¡ÏDµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=2cos22x-2£¬¸ø³öÏÂÁÐÃüÌ⣺
¢Ù?¦Â¡ÊR£¬f£¨x+¦Â£©ÎªÆæº¯Êý£»
¢Ú?¦Á¡Ê£¨0£¬$\frac{3¦Ð}{4}$£©£¬f£¨x£©=f£¨x+2¦Á£©¶Ôx¡ÊRºã³ÉÁ¢£»
¢Û?x1£¬x2¡ÊR£¬Èô|f£¨x1£©-f£¨x2£©|=2£¬Ôò|x1-x2|µÄ×îСֵΪ$\frac{¦Ð}{4}$£»
¢Ü?x1£¬x2¡ÊR£¬Èôf£¨x1£©=f£¨x2£©=0£¬Ôòx1-x2=k¦Ð£¨k¡ÊZ£©£®ÆäÖеÄÕæÃüÌâÓУ¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Û¢ÜC£®¢Ú¢ÛD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪˫ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ½¥½üÏßÓëÅ×ÎïÏßC2£ºy2=2px£¨p£¾0£©µÄ×¼ÏßΧ³ÉÒ»¸öµÈ±ßÈý½ÇÐΣ¬ÔòË«ÇúÏßC1µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{2\sqrt{3}}{3}$B£®$\sqrt{3}$C£®$\frac{\sqrt{3}}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ä³ÈËËæ»ú²¥·Å¼×¡¢ÒÒ¡¢±û¡¢¶¡4Ê׸èÇúÖеÄ2Ê×£¬Ôò¼×¡¢ÒÒ2Ê׸èÇúÖÁÉÙÓÐ1Ê×±»²¥·ÅµÄ¸ÅÂÊÊÇ$\frac{5}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©Âú×ã$\sqrt{x}{f^'}£¨x£©£¼\frac{1}{2}$£¬ÔòÏÂÁв»µÈʽÖУ¬Ò»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®f£¨9£©-1£¼f£¨4£©£¼f£¨1£©+1B£®f£¨1£©+1£¼f£¨4£©£¼f£¨9£©-1C£®f£¨5£©+2£¼f£¨4£©£¼f£¨1£©-1D£®f£¨1£©-1£¼f£¨4£©£¼f£¨5£©+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©µÄ½¹µãΪÍÖÔ²C2£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨{a£¾b£¾0}£©µÄÓÒ½¹µã£¬ÇÒÁ½ÇúÏßÓй«¹²µã£¨$\frac{2}{3}$£¬$\frac{{2\sqrt{6}}}{3}}$£©
£¨1£©ÇóÅ×ÎïÏßC1ÓëÍÖÔ²C2µÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²C2µÄÒ»ÌõÇÐÏßlÓëÅ×ÎïÏßC1½»ÓÚA£¬BÁ½µã£¬ÇÒOA¡ÍOB£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{an}Âú×ãa1=1£¬a1+a3+a5=21£¬Ôòa2+a4+a6=£¨¡¡¡¡£©
A£®-42B£®84C£®42D£®168

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÉèSnÊǵȲîÊýÁÐ{an}µÄǰnÏîºÍ£¬Èô¹«²îd¡Ù0£¬a5=10£¬ÇҳɵȱÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=$\frac{1}{{£¨{a_n}-1£©£¨{a_n}+1£©}}$£¬Tn=b1+b2+¡­+bn£¬ÇóÖ¤£ºTn£¼$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸