精英家教网 > 高中数学 > 题目详情
5.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与抛物线C2:y2=2px(p>0)的准线围成一个等边三角形,则双曲线C1的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.2

分析 由题意,渐近线的斜率为$±\frac{\sqrt{3}}{3}$,由a,b,c的关系和离心率公式,计算即可得到所求值.

解答 解:由题意,渐近线的斜率为$±\frac{\sqrt{3}}{3}$.
∴$\frac{b}{a}$=$\frac{\sqrt{3}}{3}$,
∴e=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{2\sqrt{3}}{3}$,
故选:A.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面积;
(Ⅱ)若D,E在线段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx-1,sin(2x+$\frac{π}{3}$)),$\overrightarrow{b}$=(1,cos(2x+$\frac{π}{6}$)),$\overrightarrow{c}$=(cosx,1),f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$
(1)求函数f(x)在[0,π]上的单调递增区间;
(2)△ABC的角A,B,C的对边长分别为a,b,c,且a2,b2,c2成等差数列,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)在平面直角坐标系中,设曲线C经过伸缩变换φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=y}\end{array}\right.$得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?(  )
A.8日B.9日C.12日D.16日

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设复数z=a+bi(a,b∈R,i为虚数单位),若z=(4+3i)i,则ab的值是-12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B两点,求△ABQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.(x2-x-2)3展开式中x项的系数为(  )
A.-12B.12C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-x,g(x)=ex-ax-1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案