精英家教网 > 高中数学 > 题目详情
14.(x2-x-2)3展开式中x项的系数为(  )
A.-12B.12C.4D.-4

分析 由题意利用乘方的意义,以及排列组合的知识,求得(x2-x-2)3展开式中x项的系数.

解答 解:(x2-x-2)3表示3个因式(x2-x-2)的积,故其中一个因式选-x,
其余的2个因式都取-2,即可得到含x的项,
故含x项的系数为-C31•(-2)×(-2)=-12,
故选:A.

点评 本题主要考查二项式定理,乘方的意义,排列组合的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与抛物线C2:y2=2px(p>0)的准线围成一个等边三角形,则双曲线C1的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足$\sqrt{x}{f^'}(x)<\frac{1}{2}$,则下列不等式中,一定成立的是(  )
A.f(9)-1<f(4)<f(1)+1B.f(1)+1<f(4)<f(9)-1C.f(5)+2<f(4)<f(1)-1D.f(1)-1<f(4)<f(5)+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C1:y2=2px(p>0)的焦点为椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1({a>b>0})的右焦点,且两曲线有公共点($\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$)
(1)求抛物线C1与椭圆C2的方程;
(2)若椭圆C2的一条切线l与抛物线C1交于A,B两点,且OA⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}满足an+1=(-1)n(3an-1+1),n≥2,n∈N*,且a1=a2=1,Sn是数列{an}的前n项和,则S16=$\frac{7}{16}({3}^{8}-1)$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知各项均为正数的等比数列{an}满足a1=1,a1+a3+a5=21,则a2+a4+a6=(  )
A.-42B.84C.42D.168

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过O点作直线l的垂线所得的垂足称为点P在直线l上的射影,由区域$\left\{\begin{array}{l}{y≤2-x}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$内的点在直线l:λ(2x-3y-9)+μ(x+y-2)=0上的射影构成线段记为MN,则|MN|的长度的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mex+x+1.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点x1,x2(x1<x2),证明:x1+x2>0.

查看答案和解析>>

同步练习册答案