精英家教网 > 高中数学 > 题目详情
7.设Sn是等差数列{an}的前n项和,若公差d≠0,a5=10,且成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{2}$.

分析 (Ⅰ)利用等差数列的前n项和公式、等比数列性质,列出方程组,求出a1=2,d=2,由此能求出数列{an}的通项公式.
(Ⅱ)由${b_n}=\frac{1}{{({a_n}-1)({a_n}+1)}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用裂项求和法能证明Tn<$\frac{1}{2}$.

解答 解:(Ⅰ)∵Sn是等差数列{an}的前n项和,
公差d≠0,a5=10,且成等比数列,
∴由题知:$\left\{\begin{array}{l}{a_1}+4d=10\\{a_1}({a_1}+3d)={({a_1}+d)^2}\end{array}\right.$,
解得:a1=2,d=2,
故数列{an}的通项公式an=2n.
证明:(Ⅱ)∵${b_n}=\frac{1}{{({a_n}-1)({a_n}+1)}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴Tn=b1+b2+…+bn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})<\frac{1}{2}$.
∴Tn<$\frac{1}{2}$.

点评 本题考查数列的通项公式的求法,考查等差数列的前n项和公式、能项公式、等比数列、裂项求和法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数),其中0≤α<π.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=4cosθ.直线l与曲线C1相切.
(1)将曲线C1的极坐标方程化为直角坐标方程,并求α的值.
(2)已知点Q(2,0),直线l与曲线C2:x2+$\frac{{y}^{2}}{3}$=1交于A,B两点,求△ABQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2-2x≤0},B={-1,0,1,2},则A∩B=(  )
A.[0,2]B.{0,1,2}C.(-1,2)D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-x,g(x)=ex-ax-1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图为一个多面体的三视图,则该多面体的体积为(  )
A.$\frac{20}{3}$B.7C.$\frac{22}{3}$D.$\frac{23}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{ax}{{x}^{2}+3}$,若f′(1)=$\frac{1}{2}$,则实数a的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,AA1⊥底面ABCD,E为B1D的中点.
(Ⅰ)证明:平面ACE⊥平面ABCD;
(Ⅱ)若二面角D-AE-C为60°,AA1=AB=1,求三棱锥C-AED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=3,an+1=$\frac{{3{a_n}-1}}{{{a_n}+1}}$.
(1)证明:数列$\left\{{\frac{1}{{{a_n}-1}}}\right\}$是等差数列,并求{an}的通项公式;
(2)令bn=a1a2•…•an,求数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知A、B、C、D为抛物线E:x2=2py(p>0)上不同四点,其中A、D关于y轴对称,过点D作抛物线E的切线l和直线BC平行.
(Ⅰ)求证:AD平分∠CAB;
(Ⅱ)若p=2,点D到直线AB、AC距离和为$\sqrt{2}$|AD|,三角形ABC面积为128,求BC的直线方程.

查看答案和解析>>

同步练习册答案