精英家教网 > 高中数学 > 题目详情
17.如图,已知A、B、C、D为抛物线E:x2=2py(p>0)上不同四点,其中A、D关于y轴对称,过点D作抛物线E的切线l和直线BC平行.
(Ⅰ)求证:AD平分∠CAB;
(Ⅱ)若p=2,点D到直线AB、AC距离和为$\sqrt{2}$|AD|,三角形ABC面积为128,求BC的直线方程.

分析 (1)A(-x0,y0),D(x0,y0)B(x1,y1),C(x2,y2),证明kAC+kAB=$\frac{{x}_{2}-{x}_{0}}{2p}$+$\frac{{x}_{1}-{x}_{0}}{2p}$=0,由此能推导出∠BAC的角平分线在直线AD上.
(2)设∠BAD=∠CAD=α,则m=n=|AD|sinα,α=$\frac{π}{4}$,由此能推导出直线BC的方程.

解答 (1)证明:设A(-x0,y0),D(x0,y0)B(x1,y1),C(x2,y2),
∵y′=$\frac{x}{p}$,∴kBC=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{{x}_{1}+{x}_{2}}{2p}$=$\frac{{x}_{0}}{p}$,∴x1+x2=2x0
kAC=$\frac{{x}_{2}-{x}_{0}}{2p}$.kAB=$\frac{{x}_{1}-{x}_{0}}{2p}$,
∴kAC+kAB=$\frac{{x}_{2}-{x}_{0}}{2p}$+$\frac{{x}_{1}-{x}_{0}}{2p}$=0,
所以直线AC和直线AB的倾斜角互补,所以∠BAD=∠CAD,
∴∠BAC的角平分线在直线AD上(6分)
(2)解:∠BAD=∠CAD=α
则m=n=|AD|sinα,∴sinα=$\frac{\sqrt{2}}{2}$,∴α=$\frac{π}{4}$,
∴直线AC的方程:y-$\frac{{{x}_{0}}^{2}}{4}$=x+x0,即y=x+$\frac{{{x}_{0}}^{2}}{4}$+x0
把直线AC与抛物线方程x2=4y联立的x2-4x-4x0-x02=0∴-x0x2=-4x0-x02∴x2=x0+4
同理可得x1=x0-4,
∵-x0<x0-4<x0,∴x0>2,
∴S△ABC=$\frac{1}{3}\sqrt{2}(4+2{x}_{0})•\sqrt{2}(2{x}_{0}-4)$=$4({{x}_{0}}^{2}-4)$=128,
∴x0=6(10分)
∴B(2,1),kBC=3,∴lBC:3x-y-5=0(12分)

点评 本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设Sn是等差数列{an}的前n项和,若公差d≠0,a5=10,且成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{({a_n}-1)({a_n}+1)}}$,Tn=b1+b2+…+bn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为ai,i=1,2,3,…,15)购买这四种新产品的情况,记录如下(单位:件):



a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15
A11111
B11111111
C1111111
D111111
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-a(a∈R)与函数F(x)=x+$\frac{2}{x}$的图象没有交点.
(1)求a的取值范围;
(2)若不等式xf(x)+e>2-a对于x>0的一切值恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)的导函数f′(x),满足(x-1)[xf′(x)-f(x)]>0,则下列关于f(x)的命题正确的是(  )
A.f(3)<f(-3)B.f(2)>f(-2)C.f(3)<f(2)D.2f(3)>3f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.巳知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf'(x)>0成立,若$a={4^{0.2}}f({{4^{0.2}}}),b=({{{log}_4}3})f({{{log}_4}3}),c=({{{log}_4}\frac{1}{16}})f({{{log}_4}\frac{1}{16}})$,则a,b,c的大小关系是c>a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S=1.5(单位:升),则输入k的值为(  )
A.4.5B.6C.7.5D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A={x|-4<x<1},B={x|x2-x-6<0},则A∪B等于(  )
A.(-3,1)B.(-2,1)C.(-4,2)D.(-4,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}为递增数列,Sn是其前n项和.若a1+a5=$\frac{17}{2}$,a2a4=4,则S6=(  )
A.$\frac{27}{16}$B.$\frac{27}{8}$C.$\frac{63}{4}$D.$\frac{63}{2}$

查看答案和解析>>

同步练习册答案