精英家教网 > 高中数学 > 题目详情
曲线f(x)=ex在x=0处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.
解答: 解:由f(x)=ex,得f′(x)=ex
∴f′(0)=e0=1,即曲线f(x)=ex在x=0处的切线的斜率等于1,
又f(0)=1,
∴曲线f(x)=ex在x=0处的切线方程为y=x+1,即x-y+1=0.
故答案为:x-y+1=0.
点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0)的焦距是实轴长的2倍.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为(  )
A、x2=
8
3
3
y
B、x2=
16
3
3
y
C、x2=8y
D、x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,AB∥CD,△PAB和△PAD是两个边长为2的正三角形.DC=4,PD⊥PB,点E是CD的中点.
(Ⅰ)求证:AE⊥面PBD:
(Ⅱ)求直线CB与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+x2-ax(a∈R).
(Ⅰ)当a=3时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],求证:f(x1)-f(x2)≥-
3
4
+ln2;
(Ⅲ)设g(x)=f(x)+2ln
ax+2
6
x
,对于任意a∈(2,4),总存在x∈[
3
2
,2]
,使g(x)>k(4-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下面四个判断:
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”
④若函数f(x)=ln(a+
2
x+1
)的图象关于原点对称,则a=3
其中错误的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
4
x2+bx-
3
4
.若对任意实数α,β,不等式f(cosα)≤0,f(2-sinβ)≥0恒成立,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD-A1B1C1D1是边长为3的正方体,点P、Q、R分别是棱AB、AD、AA1上的点,AP=AQ=AR=1,则四面体C1PQR的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下判断:
①已知定点A(-5,0),B(5,0)和动点C,且满足AC,BC所在直线斜率之积为2,则动点C连同点A,B的轨迹为双曲线;
②已知圆C1:(x-4)2+y2=169,圆C2:(x+4)2+y2=9,有一动圆在圆C1的内部且和圆C1内切,和圆C2相外切,则动圆圆心的轨迹为椭圆;
③已知正方体ABCD-A1B1C1D1中(如图1),P是侧面BB1C1C内的动点,若P到直线BC和直线C1D1的距离相等,则动点P的轨迹是线段;
④已知正方体ABCD-A1B1C1D1中(如图2),M为AB中点,棱长为2,P是底面ABCD上的动点,且满足条件PD1=
3PM,则动点P在底面ABCD上形成的轨迹是圆.其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=2x+y,其中变量x,y满足条件
x-4y≤-3
3x+5y≤25
x≥m
,若z的最小值为3,则m的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案