精英家教网 > 高中数学 > 题目详情
17.如图所示的几何体中,四边形ABCD为矩形,AD⊥平面AEB,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥C-BGF的体积.

分析 (1)由题意可得G为AC中点,再由已知可得F是EC中点,连接FG,由三角形中位线性质可得FG∥AE,再由线面平行的判定得答案;
(2)把三棱锥C-BGF的体积转化为G-BFC的体积,然后通过解三角形求得三棱锥G-BFC的底面积和高,则三棱锥的体积可求.

解答 (1)证明:如图,
由题意可得G是AC的中点,连接FG,
∵BF⊥平面ACE,则CE⊥BF,而BC=BE,
∴F是EC中点,
在△AEC中,FG∥AE,∴AE∥平面BFD;
(2)解:∵AE∥平面BFD,∴AE∥FG,
由题可得AE⊥平面BCE,∴FG⊥平面BCE.
∵G是AC的中点,F是CE中点,∴AE∥FG且FG=$\frac{1}{2}AE=1$,
∵BF⊥平面ACE,∴BF⊥CE,∴Rt△BCE中,BF=$\frac{1}{2}CE=CF=\sqrt{2}$,
∴${S}_{△CFB}=\frac{1}{2}×\sqrt{2}×\sqrt{2}=1$,
∴${V}_{C-BGF}={V}_{G-BCF}=\frac{1}{3}{S}_{△CFB}•FG$=$\frac{1}{3}$.

点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若复数Z的实部为1,且|Z|=2,则复数Z的虚部是(  )
A.-$\sqrt{3}$B.±$\sqrt{3}$C.±$\sqrt{3}$iD.$\sqrt{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义域在R上的函数f(x)满足:(x+1)f′(x)≤0,(f′(x)为f(x)的导函数)且y=f(x)为偶函数,若向量$\overrightarrow{a}$=(log${\;}_{\frac{1}{2}}$m,1),$\overrightarrow{b}$=(1,-2),则不等式f($\overrightarrow{a}•\overrightarrow{b}$)<f(-1)的实数m的取值范围是0<m$<\frac{1}{8}$或m>$\frac{1}{2}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=2,∠PCD=45°,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:平面BDE⊥平面PBC;
(3)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足$\sqrt{2x+1}$+$\sqrt{2y+3}$=4,由柯西不等式可知x+y的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四边形ABCD,EADM,MDCF都是边长为2的正方形,点P,Q分别是ED,AC的中点.
(1)求几何体EMF-ABCD的表面积;
(2)证明:PQ∥平面BEF;
(3)求平面BEF与平面ABCD夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}各项均为正数,a1=1,对于任意n∈N+,2$\sqrt{{S}_{n}}$=an+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数$f(x)=3sin(2x+\frac{π}{4})+1$,将y=f(x)的图象向右平移φ(φ>0)个单位,使得到的图象关于y对称,则φ的最小值为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=0,a2=2,且对任意的m,n∈N*,都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a4,a5的值;
(2)求数列{an}的通项公式;
(3)是否存在互不相等的正整数p,q,r同时满足p,q,r为等差数列且ap,aq,ar也为等差数列?若存在,求出所有的p,q,r;若不存在,说明理由.

查看答案和解析>>

同步练习册答案